skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Measurements of mass-dependent Te isotopic variation by hydride generation MC-ICP-MS
Tellurium (Te) stable isotope measurements have the potential to serve as tracers of Te mobility and redox conditions in modern and ancient environments. Here, we present a method to measure Te isotope ratios by MC-ICP-MS utilizing a hydride generation system to efficiently deliver Te to the plasma, in combination with a 120 Te– 124 Te double spike. This approach allows for precise δ 130 Te/ 126 Te (2 σ : 0.09‰) measurements while using less than 8.75 ng of natural Te. Although hydride generation methods usually produce higher sensitivity than more conventional methods, for Te, the sensitivity is similar, on our instrument, to that achieved using a desolvating nebulizer. Nonetheless, hydride generation has an advantageous ability to exclude interfering elements such as Ba and allow analysis of samples without chemical separation of Te in some cases. We also demonstrate successfully a modified ion exchange procedure to separate various matrix components and isobaric interferences from Te in natural sediments. Analyses of multiple digestions of USGS standard reference materials, mine tailings, ancient sediments, and soils utilizing this approach show the largest spread in terrestrial Te isotopic composition to date (δ 130 Te/ 126 Te ∼ 1.21‰) and a lack of detectable mass-independent fractionation.  more » « less
Award ID(s):
1660600
PAR ID:
10134471
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Analytical Atomic Spectrometry
Volume:
35
Issue:
2
ISSN:
0267-9477
Page Range / eLocation ID:
307 to 319
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The triple oxygen isotope composition (Δ’ 17 O) of sulfate minerals is widely used to constrain ancient atmospheric p O 2 / p CO 2 and rates of gross primary production. The utility of this tool is based on a model that sulfate oxygen carries an isotope fingerprint of tropospheric O 2 incorporated through oxidative weathering of reduced sulfur minerals, particularly pyrite. Work to date has targeted Proterozoic environments (2.5 billion to 0.542 billion years ago) where large isotope anomalies persist; younger timescale records, which would ground ancient environmental interpretation in what we know from modern Earth, are lacking. Here we present a high-resolution record of the δ 18 O and Δ’ 17 O in marine sulfate for the last 130 million years of Earth history. This record carries a Δ’ 17 O close to 0o, suggesting that the marine sulfate reservoir is under strict control by biogeochemical cycling (namely, microbial sulfate reduction), as these reactions follow mass-dependent fractionation. We identify no discernible contribution from atmospheric oxygen on this timescale. We interpret a steady fractional contribution of microbial sulfur cycling (terrestrial and marine) over the last 100 million years, even as global weathering rates are thought to vary considerably. 
    more » « less
  2. We analyzed the deuterium composition of individual plant-waxes in lake sediments from 28 watersheds that span a range of precipitation D/H, vegetation types and climates. The apparent isotopic fractionation (εa) between plant-wax n-alkanes and precipitation differs with watershed ecosystem type and structure, and decreases with increasing regional aridity as measured by enrichment of 2H and 18O associated with evaporation of lake waters. The most negative εa values represent signatures least affected by aridity; these values were −125 ± 5‰ for tropical evergreen and dry forests, −130‰ for a temperate broadleaf forest, −120 ± 9‰ for the high-altitude tropical páramo (herbs, shrubs and grasses), and −98 ± 6‰ for North American montane gymnosperm forests. Minimum εa values reflect ecosystem-dependent differences in leaf water enrichment and soil evaporation. Slopes of lipid/lake water isotopic enrichments differ slightly with ecosystem structure (i.e. open shrublands versus forests) and overall are quite small (slopes = 0–2), indicating low sensitivity of lipid δD variations to aridity compared with coexisting lake waters. This finding provides an approach for reconstructing ancient precipitation signatures based on plant-wax δD measurements and independent proxies for lake water changes with regional aridity. To illustrate this approach, we employ paired plant-wax δD and carbonate-δ18O measurements on lake sediments to estimate the isotopic composition of Miocene precipitation on the Tibetan plateau. 
    more » « less
  3. Abstract Ancient greenhouse periods are useful analogs for predicting effects of anthropogenic climate change on regional and global temperature and precipitation patterns. A paucity of terrestrial data from polar regions during warm episodes challenges our understanding of polar climate responses to natural/anthropogenic change and therefore our ability to predict future changes in precipitation. Ellesmere and Axel Heiberg Islands in the Canadian Arctic preserve terrestrial deposits spanning the late Paleocene to middle Eocene (59–45 Ma). Here we expand on existing regional sedimentology and paleontology through the addition of stable (δ13C, δ18O) and clumped (Δ47) isotope analyses on palustrine carbonates. δ13C isotope values range from −4.6 to +12.3‰ (VPDB), and δ18O isotope values range from −23.1 to −15.2‰ (VPDB). Both carbon and oxygen isotope averages decrease with increasing diagenetic alteration. Unusually enriched carbon isotope (δ13C) values suggest that analyzed carbonates experienced repeated dissolution‐precipitation enrichment cycles, potentially caused by seasonal fluctuations in water availability resulting in summer carbonate dissolution followed by winter carbonate re‐precipitation. Stable isotopes suggest some degree of precipitation seasonality or reduction in winter water availability in the Canadian Arctic during the Paleogene. Clumped (Δ47) temperature estimates range from 52 to 121°C and indicate low temperature solid‐state reordering of micritic samples and diagenetic recrystallization in sparry samples. Average temperatures agree with vitrinite reflectance data for Eureka Sound Group and underlying sediments, highlighting structural complexity across the region. Broadly, combined stable and clumped isotope data from carbonates in complex systems are effective for describing both paleoclimatic and post‐burial conditions. 
    more » « less
  4. Abstract Pyrite trace element (TE) chemistry is now widely employed in studies of past ocean chemistry. Thus far the main proof of concept has been correlation between large data sets of pyrite and bulk analyses emphasizing redox sensitive TE data from ancient samples spanning geologic time. In contrast, pyrite TE data from modern settings are very limited. The sparse available data are averages from samples from the Cariaco Basin without stratigraphic resolution and from estuarine sediments. To fill this gap, we present TE data (Co, Ni, Cu, Zn, Mo, Ag, Pb, Bi) from the two largest euxinic basins on Earth today, locations where the majority of the pyrite formed within the water column, the Black Sea and Cariaco Basin. These locations have different water column TE contents due to their relative degrees of restriction from the open ocean, thus providing an ideal test of the relationship between pyrite precipitated under euxinic conditions from basins with different degrees of basin restriction and dissolved TE concentration. At each site we observed that down-core trends for pyrite increase before reaching relatively steady values for most TE. This observation suggests that instead of all the TE being sourced directly from the water column, some are incorporated from the sediments, presumably desorbing from detrital materials. However, since much of the adsorbed TE is adsorbed from the overlying water, the pyrite chemistry still seems to reflect the water chemistry at or near the surface. Indeed, for Mo, there is less variation in pyrite than in bulk sediment. Additionally, we found that pyrite formed during diagenesis due to sulfide diffusion into iron-rich muds revealed low-TE contents, except for siderophile elements likely to have been adsorbed onto Fe (hydr)oxides, highlighting the risk of potential false negatives from pyrite formed under these conditions. This relationship highlights the need for detailed understanding of the full context, including the use of complementary geochemical data such as sulfur isotope trends, in efforts to use pyrite TE to interpret conditions in the global ocean. 
    more » « less
  5. Abstract Uranium isotopes (238U/235U) have been used widely over the last decade as a global proxy for marine redox conditions. The largest isotopic fractionations in the system occur during U reduction, removal, and burial. Applying this basic framework, global U isotope mass balance models have been used to predict the extent of ocean floor anoxia during key intervals throughout Earth's history. However, there are currently minimal constraints on the isotopic fractionation that occurs during reduction and burial in anoxic and iron‐rich (ferruginous) aquatic systems, despite the consensus that ferruginous conditions are thought to have been widespread through the majority of our planet's history. Here we provide the first exploration of δ238U values in natural ferruginous settings. We measured δ238U in sediments from two modern ferruginous lakes (Brownie Lake and Lake Pavin), the water column of Brownie Lake, and sedimentary rocks from the Silurian‐Devonian boundary that were deposited under ferruginous conditions. Additionally, we provide new δ238U data from core top sediments from anoxic but nonsulfidic settings in the Peru Margin oxygen minimum zone. We find that δ238U values from sediments deposited in all of these localities are highly variable but on average are indistinguishable from adjacent oxic sediments. This forces a reevaluation of the global U isotope mass balance and how U isotope values are used to reconstruct the evolution of the marine redox landscape. 
    more » « less