skip to main content


Title: Student perspective of GTA strategies to reduce feelings of anxiousness with cold-calling
We investigated student perceptions of cold calling on their feelings of anxiousness and how graduate teaching assistants (GTAs) alleviated these feelings when students shared their ideas publicly in the context of tutorial and laboratory sessions. Physics and chemistry GTAs who led active-learning tutorials and labs practiced cold calling paired with error framing with avatar-students in a mixed-reality simulator at the beginning of the semester. Then, we observed the GTAs teaching real students in their actual classroom. We recruited eleven students from sections led by GTAs who were observed to use cold calling in their classroom to participate in semi-structured interviews. Several students reported that cold calling increased their feelings of anxiousness. However, students also reported that GTAs used strategies paired with cold calling that reduced their feelings of anxiousness, such as acknowledging student responses as valuable and remembering student names. We discuss implications for professional development on active learning strategies.  more » « less
Award ID(s):
1725554
NSF-PAR ID:
10134685
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2019 Physics Education Research Conference Proceedings
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    In college science laboratory and discussion sections, student-centered active learning strategies have been implemented to improve student learning outcomes and experiences. Research has shown that active learning activities can increase student anxiety if students fear that they could be negatively evaluated by their peers. Error framing (i.e., to frame errors as natural and beneficial to learning) is proposed in the literature as a pedagogical tool to reduce student anxiety. However, little research empirically explores how an instructor can operationalize error framing and how error framing is perceived by undergraduate students. To bridge the gap in the literature, we conducted a two-stage study that involved science graduate teaching assistants (GTAs) and undergraduate students. In stage one, we introduced cold calling (i.e., calling on non-volunteering students) and error framing to 12 chemistry and 11 physics GTAs. Cold calling can increase student participation but may increase student anxiety. Error framing has the potential to mitigate student anxiety when paired with cold calling. GTAs were then tasked to rehearse cold calling paired with error framing in a mixed-reality classroom simulator. We identified GTA statements that aligned with the definition of error framing. In stage two, we selected a few example GTA error framing statements and interviewed 13 undergraduate students about their perception of those statements.

    Results

    In the simulator, all the GTAs rehearsed cold calling multiple times while only a few GTAs made error framing statements. A thematic analysis of GTAs’ error framing statements identified ways of error indication (i.e., explicit and implicit) and framing (i.e., natural, beneficial, and positive acknowledgement). Undergraduate student interviews revealed specific framing and tone that are perceived as increasing or decreasing student comfort in participating in classroom discourse. Both undergraduate students and some GTAs expressed negative opinions toward responses that explicitly indicate student mistakes. Undergraduate students’ perspectives also suggest that error framing should be implemented differently depending on whether errors have already occurred.

    Conclusion

    Error framing is challenging for science GTAs to implement. GTAs’ operationalizations of error framing in the simulator and undergraduate students’ perceptions contribute to defining and operationalizing error framing for instructional practice. To increase undergraduate student comfort in science classroom discourse, GTAs can use implicit error indication. In response to students’ incorrect answers, GTAs can positively frame students’ specific ideas rather than discussing broadly how errors are natural or beneficial.

     
    more » « less
  2. null (Ed.)
    This research paper studies the challenges that mathematics faculty and graduate teaching assistants (GTAs) faced when moving active and collaborative calculus courses from in-person to virtual instruction. As part of a larger pedagogical change project (described below), the math department at a public Research-1 university began transitioning pre-calculus and calculus courses to an active and collaborative learning (ACL) format in Fall 2019. The change began with the introduction of collaborative worksheets in recitations which were led by GTAs and supported by undergraduate learning assistants (LAs). Students recitation periods collaboratively solving the worksheet problems on whiteboards. When COVID-19 forced the rapid transition to online teaching, these ACL efforts faced an array of challenges. Faculty and GTA reflections on the changes to teaching and learning provide insight into how instructional staff can be supported in implementing ACL across various modes of instruction. The calculus teaching change efforts discussed in this paper are part of an NSF-supported project that aims to make ACL the default method of instruction in highly enrolled gateway STEM courses across the institution. The theoretical framework for the project builds on existing work on grassroots change in higher education (Kezar and Lester, 2011) to study the effect of communities of practice on changing teaching culture. The project uses course-based communities of practice (Wenger, 1999) that include instructors, GTAs, and LAs working together to design and enact teaching change in the targeted courses alongside ongoing professional development for GTAs and LAs. Six faculty and five GTAs involved in the teaching change effort in mathematics were interviewed after the Spring 2020 semester ended. Interview questions focused on faculty and GTA experiences implementing active learning after the rapid transition to online teaching. A grounded coding scheme was used to identify common themes in the challenges faced by instructors and GTAs as they moved online and in the impacts of technology, LA support, and the department community of practice on the move to online teaching. Technology, including both access and capabilities, emerged as a common barrier to student engagement. A particular barrier was students’ reluctance to share video or participate orally in sessions that were being recorded, making group work more difficult than it had been in a physical classroom. In addition, most students lacked access to a tablet for freehand writing, presenting a significant hurdle for sharing mathematical notation when physical whiteboards were no longer an option. These challenges point to the importance of incorporating flexibility in active learning implementation and in the professional development that supports teaching changes toward active learning, since what is conceived for a collaborative physical classroom may be implemented in a much different environment. The full paper will present a detailed analysis of the data to better understand how faculty and GTA experiences in the transition to online delivery can inform planning and professional development as the larger institutional change effort moves forward both in mathematics and in other STEM fields. 
    more » « less
  3. null (Ed.)
    We investigated how changing the physical classroom impacted graduate teaching assistant (GTA) and student behaviors in tutorial sections of an introductory algebra-based physics sequence. Using a modified version of the Laboratory Observation Protocol for Undergraduate STEM (LOPUS), we conducted 35 observations over two semesters for seven GTAs who taught in different styles of classrooms (i.e., active learning classrooms and traditional classrooms). We found that both GTAs and students changed behaviors in response to a change from an active learning classroom to a traditional classroom. GTAs were found to be less interactive with student groups and to lecture at the whiteboard more frequently. Correspondingly, student behaviors changed as students asked fewer questions during one-on-one interactions. These findings suggest that the instructional capacity framework, which typically focuses on interactions between instructors, students and instructional materials, should also include interactions with the learning space. We suggest administrators and departments consider the impact of changing to a traditional classroom when implementing student-centered instruction and emphasize how to use classroom space in GTA professional development. 
    more » « less
  4. Dyan Jones, Qing X. (Ed.)
    Despite the positive gains towards student learning outcomes and engagement, active learning has been shown to potentially increase student anxiety due to a fear of negative evaluation. A pedagogical strategy proposed to mediate this issue is known as error framing; it asks instructors to encourage a perception of errors as being a natural part of the learning process. Previous work on this project investigated how graduate teaching assistants (GTAs) operationalized error framing during their training in a mixed-reality simulator but did not investigate their usage of it in their classrooms. This analysis characterizes the error framing statements made by GTAs during a set of classroom observations. We find that GTAs who employ error framing effectively avoid statements that might decrease student comfort and instead tend towards implicit, indirect strategies. 
    more » « less
  5. Instructor-led presentation-based teaching mainly focuses on delivering content. Whereas student active presentations-based teaching approaches require students to take leadership in learning actions. Many teaching and learning strategies were adopted to foster active student participation during in-class learning activities. We developed the student presentation-based effective teaching (SPET) approach in 2014 to make student presentation activity the central element of learning challenging concepts. We have developed several versions to meet the need for teaching small classes (P. Tyagi, "Student Presentation Based Effective Teaching (SPET) Approach for Advanced Courses," in ASME IMECE 2016-66029, V005T06A026), large enrolment classes (P. Tyagi, "Student Presentation Based Teaching (SPET) Approach for Classes With Higher Enrolment," ASME IMECE 2018-88463, V005T07A035), and online teaching during COVID-19. (P. Tyagi, "Second Modified Student Presentation Based Effective Teaching (SPET) Method Tested in COVID-19 Affected Senior Level Mechanical Engineering Course," in ASME IMECE 2020-23615, V009T09A026). The SPET approach has successfully engaged students with varied interests and competence levels in the learning process. SPET approach has also made it possible to cover new topics such as training engineering students about positive intelligence skills to foster lifelong learning aptitude and doing engineering projects in a group setting. However, it was noted that many students who were overwhelmed with parallel academic demands in other courses and different activities were underperforming via SPET-based learning strategies. SPET core functioning depends on the following steps: Step 1: Provide a set of conceptual and topical questions for students to answer individually after self-education from the recommended textbook or course material, Step-2: Group presentations are prepared by the prepared students for in-class discussion, Step-3: Group makes a presentation in class 1-2 weeks after the day of the assignment to seek instructor feedback and to do peer discussion. The instructor noted that students unfamiliar with the new concepts and terminologies in the SPET assignment struggled to respond to questions individually and contribute to the group discussion based on their presentation. Several motivated students who invested time in familiarizing new concepts and terminologies met or exceeded the expectations. However, a significant student population struggled. To alleviate this issue author has implemented a further improvement in SPET approach. This paper reports teaching experiments conducted in MECH 487 Photovoltaic Cells and Solar Thermal Energy System and MECH 462 Design of Energy Systems course. This improvement requires augmenting SPET with instructor-led concept familiarization discussion on the day of issuing the assignment or close to that; for this step instructor utilized exemplary student work from prior SPET-based teaching of the same course. In the survey, many students expressed their views about the improvement and reported introductory discussions were helpful and addressed several reservations and impediments students encountered. This paper will discuss the structure of the new improvement strategy and outcomes-including student feedback and comments. 
    more » « less