skip to main content


Title: OBFUSCURO: A Commodity Obfuscation Engine on Intel SGX
Program obfuscation is a popular cryptographic construct with a wide range of uses such as IP theft prevention. Although cryptographic solutions for program obfuscation impose impractically high overheads, a recent breakthrough leveraging trusted hardware has shown promise. However, the existing solution is based on special-purpose trusted hardware, restricting its use-cases to a limited few. In this paper, we first study if such obfuscation is feasible based on commodity trusted hardware, Intel SGX, and we observe that certain important security considerations are not afforded by commodity hardware. In particular, we found that existing obfuscation/obliviousness schemes are insecure if directly applied to Intel SGX primarily due to side-channel limitations. To this end, we present OBFUSCURO, the first system providing program obfuscation using commodity trusted hardware, Intel SGX. The key idea is to leverage ORAM operations to perform secure code execution and data access. Initially, OBFUSCURO transforms the regular program layout into a side-channel secure and ORAM-compatible layout. Then, OBFUSCURO ensures that its ORAM controller performs data oblivious accesses in order to protect itself from all memory-based side-channels. Furthermore, OBFUSCURO ensures that the program is secure from timing attacks by ensuring that the program always runs for a pre-configured time interval. Along the way, OBFUSCURO also introduces a systematic optimization such as register-based ORAM stash. We provide a thorough security analysis of OBFUSCURO along with empirical attack evaluations showing that OBFUSCURO can protect the SGX program execution from being leaked by access pattern-based and timing-based channels. We also provide a detailed performance benchmark results in order to show the practical aspects of OBFUSCURO.  more » « less
Award ID(s):
1750809
NSF-PAR ID:
10134884
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Network and Distributed System Security Symposium
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Multi-user oblivious storage allows users to access their shared data on the cloud while retaining access pattern obliviousness and data confidentiality simultaneously. Most secure and efficient oblivious storage systems focus on the utilization of the maximum network bandwidth in serving concurrent accesses via a trusted proxy. How- ever, since the proxy executes a standard ORAM protocol over the network, the performance is capped by the network bandwidth and latency. Moreover, some important features such as access control and security against active adversaries have not been thoroughly explored in such proxy settings. In this paper, we propose MOSE, a multi-user oblivious storage system that is efficient and enjoys from some desirable security properties. Our main idea is to harness a secure enclave, namely Intel SGX, residing on the untrusted storage server to execute proxy logic, thereby, minimizing the network bottleneck of proxy-based designs. In this regard, we address various technical design challenges such as memory constraints, side-channel attacks and scalability issues when enabling proxy logic in the secure enclave. We present a formal security model and analysis for secure enclave multi-user ORAM with access control. We optimize MOSE to boost its throughput in serving concurrent requests. We implemented MOSE and evaluated its performance on commodity hardware. Our evaluation confirmed the efficiency of MOSE, where it achieves approximately two orders of magnitudes higher throughput than the state-of-the-art proxy-based design, and also, its performance is scalable proportional to the available system resources. 
    more » « less
  2. Confidential computing aims to secure the code and data in use by providing a Trusted Execution Environment (TEE) for applications using hardware features such as Intel SGX.Timing and cache side-channel attacks, however, are often outside the scope of the threat model, although once exploited they are able to break all the default security guarantees enforced by hardware. Unfortunately, tools detecting potential side-channel vulnerabilities within applications are limited and usually ignore the strong attack model and the unique programming model imposed by Intel SGX. This paper proposes a precise side-channel analysis tool, ENCIDER, detecting both timing and cache side-channel vulnerabilities within SGX applications via inferring potential timing observation points and incorporating the SGX programming model into analysis. ENCIDER uses dynamic symbolic execution to decompose the side-channel requirement based on the bounded non-interference property and implements byte-level information flow tracking via API modeling. We have applied ENCIDER to 4 real-world SGX applications, 2 SGX crypto libraries, and 3 widely-used crypto libraries, and found 29 timing side channels and 73 code and data cache side channels. We have reported our findings to the corresponding parties, e.g., Intel and ARM, who have confirmed most of the vulnerabilities detected. 
    more » « less
  3. Trusted execution environments (TEEs) have been proposed to protect GPU computation for machine learning applications operating on sensitive data. However, existing GPU TEE solutions either require CPU and/or GPU hardware modification to realize TEEs for GPUs, which prevents current systems from adopting them, or rely on untrusted system software such as GPU device drivers. In this paper, we propose using CPU secure enclaves, e.g., Intel SGX, to build GPU TEEs without modifications to existing hardware. To tackle the fundamental limitations of these enclaves, such as no support for I/O operations, we design and develop GEVisor, a formally verified security reference monitor software to enable a trusted I/O path between enclaves and GPU without trusting the GPU device driver. GEVisor operates in the Virtual Machine Extension (VMX) root mode, monitors the host system software to prevent unauthorized access to the GPU code and data outside the enclave, and isolates the enclave GPU context from other contexts during GPU computation. We implement and evaluate GEVisor on a commodity machine with an Intel SGX CPU and an NVIDIA Pascal GPU. Our experimental results show that our approach maintains an average overhead of 13.1% for deep learning and 18% for GPU benchmarks compared to native GPU computation while providing GPU TEEs for existing CPU and GPU hardware. 
    more » « less
  4. Today, isolated trusted computation and code execution is of paramount importance to protect sensitive information and workflows from other malicious privileged or unprivileged software. Intel Software Guard Extensions (SGX) is a set of security architecture extensions first introduced in the Skylake microarchitecture that enables a Trusted Execution Environment (TEE). It provides an ‘inverse sandbox’, for sensitive programs, and guarantees the integrity and confidentiality of secure computations, even from the most privileged malicious software (e.g. OS, hypervisor). SGX-capable CPUs only became available in production systems in Q3 2015, and they are not yet fully supported and adopted in systems. Besides the capability in the CPU, the BIOS also needs to provide support for the enclaves, and not many vendors have released the required updates for the system support. This has led to many wrong assumptions being made about the capabilities, features, and ultimately dangers of secure enclaves. By having access to resources and publications such as white papers, patents and the actual SGX-capable hardware and software development environment, we are in a privileged position to be able to investigate and demystify SGX. In this paper, we first review the previous trusted execution technologies, such as ARM Trust Zone and Intel TXT, to better understand and appreciate the new innovations of SGX. Then, we look at the details of SGX technology, cryptographic primitives and the underlying concepts that power it, namely the sealing, attestation, and the Memory Encryption Engine (MEE). We also consider use cases such as trusted and secure code execution on an untrusted cloud platform, and digital rights management (DRM). This is followed by an overview of the software development environment and the available libraries. 
    more » « less
  5. A protocol for two-party secure function evaluation (2P-SFE) aims to allow the parties to learn the output of function f of their private inputs, while leaking nothing more. In a sense, such a protocol realizes a trusted oracle that computes f and returns the result to both parties. There have been tremendous strides in efficiency over the past ten years, yet 2P-SFE protocols remain impractical for most real-time, online computations, particularly on modestly provisioned devices. Intel's Software Guard Extensions (SGX) provides hardware-protected execution environments, called enclaves, that may be viewed as trusted computation oracles. While SGX provides native CPU speed for secure computation, previous side-channel and micro-architecture attacks have demonstrated how security guarantees of enclaves can be compromised. In this paper, we explore a balanced approach to 2P-SFE on SGX-enabled processors by constructing a protocol for evaluating f relative to a partitioning of f. This approach alleviates the burden of trust on the enclave by allowing the protocol designer to choose which components should be evaluated within the enclave, and which via standard cryptographic techniques. We describe SGX-enabled SFE protocols (modeling the enclave as an oracle), and formalize the strongest-possible notion of 2P-SFE for our setting. We prove our protocol meets this notion when properly realized. We implement the protocol and apply it to two practical problems: privacy-preserving queries to a database, and a version of Dijkstra's algorithm for privacy-preserving navigation. Our evaluation shows that our SGX-enabled SFE scheme enjoys a 38x increase in performance over garbled-circuit-based SFE. Finally, we justify modeling of the enclave as an oracle by implementing protections against known side-channels. 
    more » « less