skip to main content


Title: Simple Threshold Rules Solve Explore/Exploit Trade‐offs in a Resource Accumulation Search Task
Abstract

How, and how well, do people switch between exploration and exploitation to search for and accumulate resources? We study the decision processes underlying such exploration/exploitation trade‐offs using a novel card selection task that captures the common situation of searching among multiple resources (e.g., jobs) that can be exploited without depleting. With experience, participants learn to switch appropriately between exploration and exploitation and approach optimal performance. We model participants' behavior on this task with random, threshold, and sampling strategies, and find that a linear decreasing threshold rule best fits participants' results. Further evidence that participants use decreasing threshold‐based strategies comes from reaction time differences between exploration and exploitation; however, participants themselves report non‐decreasing thresholds. Decreasing threshold strategies that “front‐load” exploration and switch quickly to exploitation are particularly effective in resource accumulation tasks, in contrast to optimal stopping problems like the Secretary Problem requiring longer exploration.

 
more » « less
NSF-PAR ID:
10135007
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Cognitive Science
Volume:
44
Issue:
2
ISSN:
0364-0213
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Everyday experience requires processing external signals from the world around us and internal information retrieved from memory. To do both, the brain must fluctuate between states that are optimized for external versus internal attention. Here, we focus on the hippocampus as a region that may serve at the interface between these forms of attention and ask how it switches between prioritizing sensory signals from the external world versus internal signals related to memories and thoughts. Pharmacological, computational, and animal studies have identified input from the cholinergic basal forebrain as important for biasing the hippocampus toward processing external information, whereas complementary research suggests the dorsal attention network (DAN) may aid in allocating attentional resources toward accessing internal information. We therefore tested the hypothesis that the basal forebrain and DAN drive the hippocampus toward external and internal attention, respectively. We used data from 29 human participants (17 female) who completed two attention tasks during fMRI. One task (memory-guided) required proportionally more internal attention, and proportionally less external attention, than the other (explicitly instructed). We discovered that background functional connectivity between the basal forebrain and hippocampus was stronger during the explicitly instructed versus memory-guided task. In contrast, DAN–hippocampus background connectivity was stronger during the memory-guided versus explicitly instructed task. Finally, the strength of DAN–hippocampus background connectivity was correlated with performance on the memory-guided but not explicitly instructed task. Together, these results provide evidence that the basal forebrain and DAN may modulate the hippocampus to switch between external and internal attention.

    SIGNIFICANCE STATEMENTHow does the brain balance the need to pay attention to internal thoughts and external sensations? We focused on the human hippocampus, a region that may serve at the interface between internal and external attention, and asked how its functional connectivity varies based on attentional states. The hippocampus was more strongly coupled with the cholinergic basal forebrain when attentional states were guided by the external world rather than retrieved memories. This pattern flipped for functional connectivity between the hippocampus and dorsal attention network, which was higher for attention tasks that were guided by memory rather than external cues. Together, these findings show that distinct networks in the brain may modulate the hippocampus to switch between external and internal attention.

     
    more » « less
  2. We have long known that characterizing protein structures structure is key to understanding protein function. Computational approaches have largely addressed a narrow formulation of the problem, seeking to compute one native structure from an amino-acid sequence. Now AlphaFold2 promises to reveal a high-quality native structure for possibly many proteins. However, researchers over the years have argued for broadening our view to account for the multiplicity of native structures. We now know that many protein molecules switch between different structures to regulate interactions with molecular partners in the cell. Elucidating such structures de novo is exceptionally difficult, as it requires exploration of possibly a very large structure space in search of competing, near-optimal structures. Here we report on a novel stochastic optimization method capable of revealing very different structures for a given protein from knowledge of its amino-acid sequence. The method leverages evolutionary search techniques and adapts its exploration of the search space to balance between exploration and exploitation in the presence of a computational budget. In addition to demonstrating the utility of this method for identifying multiple native structures, we additionally provide a benchmark dataset for researchers to continue work on this problem. 
    more » « less
  3. Abstract

    Infrastructure systems must change to match the growing complexity of the environments they operate in. Yet the models of governance and the core technologies they rely on are structured around models of relative long-term stability that appear increasingly insufficient and even problematic. As the environments in which infrastructure function become more complex, infrastructure systems must adapt to develop a repertoire of responses sufficient to respond to the increasing variety of conditions and challenges. Whereas in the past infrastructure leadership and system design has emphasized organization strategies that primarily focus on exploitation (e.g., efficiency and production, amenable to conditions of stability), in the future they must create space for exploration, the innovation of what the organization is and does. They will need to create the abilities to maintain themselves in the face of growing complexity by creating the knowledge, processes, and technologies necessary to engage environment complexity. We refer to this capacity asinfrastructure autopoiesis. In doing so infrastructure organizations should focus on four key tenets. First, a shift to sustained adaptation—perpetual change in the face of destabilizing conditions often marked by uncertainty—and away from rigid processes and technologies is necessary. Second, infrastructure organizations should pursue restructuring their bureaucracies to distribute more resources and decisionmaking capacity horizontally, across the organization’s hierarchy. Third, they should build capacity for horizon scanning, the process of systematically searching the environment for opportunities and threats. Fourth, they should emphasize loose fit design, the flexibility of assets to pivot function as the environment changes. The inability to engage with complexity can be expected to result in a decoupling between what our infrastructure systems can do and what we need them to do, and autopoietic capabilities may help close this gap by creating the conditions for a sufficient repertoire to emerge.

     
    more » « less
  4. Machine-learning (ML) approaches have proven to be of great utility in modern materials innovation pipelines. Generally, ML models are trained on predetermined past data and then used to make predictions for new test cases. Active-learning, however, is a paradigm in which ML models can direct the learning process itself through providing dynamic suggestions/queries for the “next-best experiment.” In this work, the authors demonstrate how an active-learning framework can aid in the discovery of polymers possessing high glass transition temperatures ( T g ). Starting from an initial small dataset of polymer T g measurements, the authors use Gaussian process regression in conjunction with an active-learning framework to iteratively add T g measurements of candidate polymers to the training dataset. The active-learning framework employs one of three decision making strategies (exploitation, exploration, or balanced exploitation/exploration) for selection of the “next-best experiment.” The active-learning workflow terminates once 10 polymers possessing a T g greater than a certain threshold temperature are selected. The authors statistically benchmark the performance of the aforementioned three strategies (against a random selection approach) with respect to the discovery of high- T g polymers for this particular demonstrative materials design challenge. 
    more » « less
  5. In this paper, we consider transmission scheduling in a status update system, where updates are generated periodically and transmitted over a Gilbert-Elliott fading channel. The goal is to minimize the long-run average age of information (AoI) under a long-run average energy constraint. We consider two practical cases to obtain channel state information (CSI): (i) without channel sensing and (ii) with delayed channel sensing. For (i), CSI is revealed by the feedback (ACK/NACK) of a transmission, but when no transmission occurs, CSI is not revealed. Thus, we have to balance tradeoffs across energy, AoI, channel exploration, and channel exploitation. The problem is formulated as a constrained partially observable Markov decision process (POMDP). We show that the optimal policy is a randomized mixture of no more than two stationary deterministic policies each of which is of a threshold-type in the belief on the channel. For (ii), (delayed) CSI is available via channel sensing. Then, the tradeoff is only between the AoI and energy. The problem is formulated as a constrained MDP. The optimal policy is shown to have a similar structure as in (i) but with an AoI associated threshold. With these, we develop an optimal structure-aware algorithm for each case. 
    more » « less