skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dry sediment loading of headwater channels fuels post-wildfire debris flows in bedrock landscapes
Abstract Landscapes following wildfire commonly have significant increases in sediment yield and debris flows that pose major hazards and are difficult to predict. Ultimately, post-wildfire sediment yield is governed by processes that deliver sediment from hillslopes to channels, but it is commonly unclear the degree to which hillslope sediment delivery is driven by wet versus dry processes, which limits the ability to predict debris-flow occurrence and response to climate change. Here we use repeat airborne lidar topography to track sediment movement following the 2009 CE Station Fire in southern California, USA, and show that post-wildfire debris flows initiated in channels filled by dry sediment transport, rather than on hillsides during rainfall as typically assumed. We found widespread patterns of 1–3 m of dry sediment loading in headwater channels immediately following wildfire and before rainfall, followed by sediment excavation during subsequent storms. In catchments where post-wildfire dry sediment loading was absent, possibly due to differences in lithology, channel scour during storms did not occur. Our results support a fire-flood model in bedrock landscapes whereby debris-flow occurrence depends on dry sediment loading rather than hillslope-runoff erosion, shallow landslides, or burn severity, indicating that sediment supply can limit debris-flow occurrence in bedrock landscapes with more-frequent fires.  more » « less
Award ID(s):
1848321
PAR ID:
10135044
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Geology
Volume:
48
Issue:
2
ISSN:
0091-7613
Page Range / eLocation ID:
189 to 193
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Debris flows are powered by sediment supplied from steep hillslopes where soils are often patchy and interrupted by bare‐bedrock cliffs. The role of patchy soils and cliffs in supplying sediment to channels remains unclear, particularly surrounding wildfire disturbances that heighten debris‐flow hazards by increasing sediment supply to channels. Here, we examine how variation in soil cover on hillslopes affects sediment sizes in channels surrounding the 2020 El Dorado wildfire, which burned debris‐flow prone slopes in the San Bernardino Mountains, California. We focus on six headwater catchments (<0.1 km2) where hillslope sources ranged from a continuous soil mantle to 95% bare‐bedrock cliffs. At each site, we measured sediment grain size distributions at the same channel locations before and immediately following the wildfire. We compared results to a mixing model that accounts for three distinct hillslope sediment sources distinguished by local slope thresholds. We find that channel sediment in fully soil‐mantled catchments reflects hillslope soils (D50 = 0.1–0.2 cm) both before and after the wildfire. In steeper catchments with cliffs, channel sediment is consistently coarse prior to fire (D50 = 6–32 cm) and reflects bedrock fracture spacing, despite cliffs representing anywhere from 5% to 95% of the sediment source area. Following the fire, channel sediment size reduces most (5‐ to 20‐fold) in catchments where hillslope sources are predominantly soil covered but with patches of cliffs. The abrupt fining of channel sediment is thought to facilitate postfire debris‐flow initiation, and our results imply that this effect is greatest where bare‐bedrock cliffs are present but not dominant. A patchwork of bare‐bedrock cliffs is common in steeplands where hillslopes respond to channel incision by landsliding. We show how local slope thresholds applied to such terrain aid in estimating sediment supply conditions before two destructive debris flows that eventually nucleated in these study catchments in 2022. 
    more » « less
  2. Abstract Post‐fire debris flows represent one of the most erosive consequences associated with increasing wildfire severity and investigations into their downstream impacts have been limited. Recent advances have linked existing hydrogeomorphic models to predict potential impacts of post‐fire erosion at watershed scales on downstream water resources. Here we address two key limitations in current models: (1) accurate predictions of post‐fire debris flow volumes in the absence of triggering storm rainfall intensities and (2) understanding controls on grain sizes produced by post‐fire debris flows. We compiled and analysed a novel dataset of depositional volumes and grain size distributions (GSDs) for 59 post‐fire debris flows across the Intermountain West (IMW) collected via fieldwork and from the literature. We first evaluated the utility of existing models for post‐fire debris flow volume prediction, which were largely developed for Southern California. We then constructed a new post‐fire debris flow volume prediction model for the IMW using a combination of Random Forest modelling and regression analysis. We found topography and burn severity to be important variables, and that the percentage of pre‐fire soil organic matter was an essential predictor variable. Our model was also capable of predicting debris flow volumes without data for the triggering storm, suggesting that rainfall may be more important as a presence/absence predictor, rather than a scaling variable. We also constructed the first models that predict the median, 16th percentile, and 84th percentile grain sizes, as well as boulder size, produced by post‐fire debris flows. These models demonstrate consistent landscape controls on debris flow GSDs that are related to land cover, physical and chemical weathering, and hillslope sediment transport processes. This work advances our ability to predict how post‐fire sediment pulses are transported through watersheds. Our models allow for improved pre‐ and post‐fire risk assessments across diverse ranges of watersheds in the IMW. 
    more » « less
  3. Pirulli, M; Leonardi, A; Vagnon, F (Ed.)
    Wildfire makes landscapes more vulnerable to debris flows by reducing soil infiltration capacity and decreasing vegetation cover. The extent to which fire affects debris-flow processes depends on the severity of the fire, the climatology of intense rainfall, the pre-fire plant community, and sediment supply, among other factors. As fire expands into new plant communities and geographic regions, there is a corresponding need to expand efforts to document fire-induced changes and their impacts on debris-flow processes. In recent years, several large wildfires have impacted portions of the Sonoran Desertscrub plant community in Arizona, USA, a plant community where fire has been historically infrequent. Following two of these fires, we monitored debris-flow activity at the watershed scale and quantified wildfire-driven changes in soil hydraulic properties using in-situ measurements with mini disk tension infiltrometers. Results indicate that rainfall intensity-duration thresholds for the initiation of post-fire debris flows in recently burned watersheds within the Sonoran Desertscrub plant community are substantially greater than those in nearby areas dominated by other plant communities, such as chaparral. Results provide insight into the impact of fire on debris-flow processes in a plant community where it is likely to be more impactful in the future and help expand existing post-fire debris flow databases into a plant community where there is a paucity of observations. 
    more » « less
  4. Abstract Wildfire alters the hydrologic cycle, with important implications for water supply and hazards including flooding and debris flows. In this study we use a combination of electrical resistivity and stable water isotope analyses to investigate the hydrologic response during storms in three catchments: one unburned and two burned during the 2020 Bobcat Fire in the San Gabriel Mountains, California, USA. Electrical resistivity imaging shows that in the burned catchments, rainfall infiltrated into the weathered bedrock and persisted. Stormflow isotope data indicate that the amount of mixing of surface and subsurface water during storms was similar in all catchments, despite higher streamflow post-fire. Therefore, both surface runoff and infiltration likely increased in tandem. These results suggest that the hydrologic response to storms in post-fire environments is dynamic and involves more surface-subsurface exchange than previously conceptualized, which has important implications for vegetation regrowth and post-fire landslide hazards for years following wildfire. 
    more » « less
  5. Abstract Post‐seismic debris flows are an important hazard following large earthquakes, propagating destruction downstream from hillslopes where coseismic landslides occur and extending damage for years after shaking stops. Data sets of post‐seismic debris flows are necessary to predict initiation and runout characteristics but are presently scarce. We used satellite imagery supplemented by field observations to compile an inventory of >1,000 debris flows associated with the 2015 Gorkha Earthquake in Nepal. We identified two distinct debris flow types: (1) Material from a coseismic landslide was remobilized in a steep channel during a later monsoon; and (2) a new post‐seismic hillslope failure occurred in saturated conditions and became fluidized and channelized. Runout distance was constrained by channel confluences and may be related to confluence geometry. Unstable landslide debris was largely flushed from steep channels during the first monsoon following the earthquake, and the rate of new hillslope failures tailed off over a few years. 
    more » « less