skip to main content


Title: Shaping and Locomotion of Soft Robots Using Filament Actuators Made from Liquid Crystal Elastomer–Carbon Nanotube Composites
  more » « less
NSF-PAR ID:
10135180
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Intelligent Systems
Volume:
2
Issue:
6
ISSN:
2640-4567
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Soft robots outperform the conventional hard robots on significantly enhanced safety, adaptability, and complex motions. The development of fully soft robots, especially fully from smart soft materials to mimic soft animals, is still nascent. In addition, to date, existing soft robots cannot adapt themselves to the surrounding environment, i.e., sensing and adaptive motion or response, like animals. Here, compliant ultrathin sensing and actuating electronics innervated fully soft robots that can sense the environment and perform soft bodied crawling adaptively, mimicking an inchworm, are reported. The soft robots are constructed with actuators of open‐mesh shaped ultrathin deformable heaters, sensors of single‐crystal Si optoelectronic photodetectors, and thermally responsive artificial muscle of carbon‐black‐doped liquid‐crystal elastomer (LCE‐CB) nanocomposite. The results demonstrate that adaptive crawling locomotion can be realized through the conjugation of sensing and actuation, where the sensors sense the environment and actuators respond correspondingly to control the locomotion autonomously through regulating the deformation of LCE‐CB bimorphs and the locomotion of the robots. The strategy of innervating soft sensing and actuating electronics with artificial muscles paves the way for the development of smart autonomous soft robots.

     
    more » « less
  2. Abstract

    Liquid crystal elastomers (LCEs) are a class of stimuli‐responsive materials that have been intensively studied for applications including artificial muscles, shape morphing structures, and soft robotics due to their capability of large, programmable, and fully reversible actuation strains. To fully take advantage of LCEs, rapid, untethered, and programmable actuation methods are highly desirable. Here, a liquid crystal elastomer‐liquid metal (LCE‐LM) composite is reported, which enables ultrafast and programmable actuations by eddy current induction heating. The composite consists of LM sandwiched between two LCE layers printed via direct ink writing (DIW). When subjected to a high‐frequency alternating magnetic field, the composite is actuated in milliseconds. By moving the magnetic field, the eddy current is spatially controlled for selective actuation. Additionally, sequential actuation is achievable by programming the LM thickness distribution in a sample. With these capabilities, the LCE‐LM composite is further exploited for multimodal deformation of a pop‐up structure, on‐ground omnidirectional robotic motion, and in‐water targeted object manipulation and crawling.

     
    more » « less
  3. Abstract

    Direct ink writing of liquid crystal elastomers (LCEs) offers a new opportunity to program geometries for a wide variety of shape transformation modes toward applications such as soft robotics. So far, most 3D‐printed LCEs are thermally actuated. Herein, a 3D‐printable photoresponsive gold nanorod (AuNR)/LCE composite ink is developed, allowing for photothermal actuation of the 3D‐printed structures with AuNR as low as 0.1 wt.%. It is shown that the printed filament has a superior photothermal response with 27% actuation strain upon irradiation to near‐infrared (NIR) light (808 nm) at 1.4 W cm−2(corresponding to 160 °C) under optimal printing conditions. The 3D‐printed composite structures can be globally or locally actuated into different shapes by controlling the area exposed to the NIR laser. Taking advantage of the customized structures enabled by 3D printing and the ability to control locally exposed light, a light‐responsive soft robot is demonstrated that can climb on a ratchet surface with a maximum speed of 0.284 mm s−1(on a flat surface) and 0.216 mm s−1(on a 30° titled surface), respectively, corresponding to 0.428 and 0.324 body length per min, respectively, with a large body mass (0.23 g) and thickness (1 mm).

     
    more » « less
  4. Abstract

    Liquid crystal elastomers (LCEs) are promising candidates for creating adaptive textile‐based devices that can actively and reversibly respond to the environment for sensing and communication. Despite recent advances in scalable manufacturing of LCE filaments for textile engineering, the actuation modes of various LCE filaments focus on contractual deformations. In this study, manufacture of polydomain LCE filaments with potential scalability by wet‐spinning is studied, followed by mechanical exploitation to program liquid crystal mesogen alignments, demonstrating both contractual and twisting actuation profiles. By plying these LCE filaments into yarns with different twist concentrations, yarn actuation, and mechanical performance is tuned. Yarns plied at 4 twists per cm can generate up to a seven‐fold increase in elastic modulus while maintaining 90% of actuation strain performance from their native filament. The contractual and twisting LCE filaments are then embroidered with varying stitch types to spatially program complex 2D‐to‐3D transformations in “inactive” fabrics. It is shown that a running stitch can actuate up to 15% in strain and create angular displacements in fabric with twisted mesogen alignments. It is envisioned that the wet‐spun polydomain LCE filaments for diverse plied yarn production together with textile engineering will open new opportunities to design smart textiles and soft robotics.

     
    more » « less
  5.  
    more » « less