skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Out-of-sample Node Representation Learning for Heterogeneous Graph in Real-time Android Malware Detection
The increasingly sophisticated Android malware calls for new defensive techniques that are capable of protecting mobile users against novel threats. In this paper, we first extract the runtime Application Programming Interface (API) call sequences from Android apps, and then analyze higher-level semantic relations within the ecosystem to comprehensively characterize the apps. To model different types of entities (i.e., app, API, device, signature, affiliation) and rich relations among them, we present a structured heterogeneous graph (HG) for modeling. To efficiently classify nodes (e.g., apps) in the constructed HG, we propose the HG-Learning method to first obtain in-sample node embeddings and then learn representations of out-of-sample nodes without rerunning/adjusting HG embeddings at the first attempt. We later design a deep neural network classifier taking the learned HG representations as inputs for real-time Android malware detection. Comprehensive experiments on large-scale and real sample collections from Tencent Security Lab are performed to compare various baselines. Promising results demonstrate that our developed system AiDroid which integrates our proposed method outperforms others in real-time Android malware detection.  more » « less
Award ID(s):
1940859 1951504
PAR ID:
10135597
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
28th International Joint Conference on Artificial Intelligence (IJCAI)
Page Range / eLocation ID:
4150 to 4156
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Android, the most dominant Operating System (OS), experiences immense popularity for smart devices for the last few years. Due to its' popularity and open characteristics, Android OS is becoming the tempting target of malicious apps which can cause serious security threat to financial institutions, businesses, and individuals. Traditional anti-malware systems do not suffice to combat newly created sophisticated malware. Hence, there is an increasing need for automatic malware detection solutions to reduce the risks of malicious activities. In recent years, machine learning algorithms have been showing promising results in classifying malware where most of the methods are shallow learners like Logistic Regression (LR). In this paper, we propose a deep learning framework, called Droid-NNet, for malware classification. However, our proposed method Droid-NNet is a deep learner that outperforms existing cutting-edge machine learning methods. We performed all the experiments on two datasets (Malgenome-215 & Drebin-215) of Android apps to evaluate Droid-NNet. The experimental result shows the robustness and effectiveness of Droid-NNet. 
    more » « less
  2. Security research on smart devices mostly focuses on malware installation and activation, privilege escalation, remote control, financial charges, personal information stealing, and permission use. Less attention has been paid to the deceptive mechanisms, which are critical for the success of malware on smart devices. Generally, malware first gets installed and then continues operating on the device without attracting suspicion from users. To do so, smart device malware uses various techniques to conceal itself, e.g., hiding activity, muting the phone, and deleting call logs. In this work, we developed an approach to semi-automatically reveal unknown malware hiding techniques. First, it extracts SMH behaviors from malware descriptions by using natural language processing techniques. Second, it maps SMH behaviors to SMH-related APIs based on the analysis of API documents. Third, it performs static analysis on the malware apps that contain unknown SMH behaviors to extract the code segments related to the SMH API calls. For those verified SMH code segments, we describe the techniques used for unknown SMH behaviors based on the code segments. Our experiment tested 119 malware apps with hiding behaviors. The F-measure is 85.58%, indicating that our approach is quite effective. 
    more » « less
  3. More than 6 billion smartphones available worldwide can enable governments and public health organizations to develop apps to manage global pandemics. However, hackers can take advantage of this opportunity to target the public in nefarious ways through malware disguised as pandemics-related apps. A recent analysis conducted during the COVID-19 pandemic showed that several variants of COVID-19 related malware were installed by the public from non-trusted sources. We propose the use of app permissions and an extra feature (the total number of permissions) to develop a static detector using machine learning (ML) models to enable the fast-detection of pandemics-related Android malware at installation time. Using a dataset of more than 2000 COVID-19 related apps and by evaluating ML models created using decision trees and Naive Bayes, our results show that pandemics-related malware apps can be detected with an accuracy above 90% using decision tree models with app permissions and the proposed feature. 
    more » « less
  4. Since malware has caused serious damages and evolving threats to computer and Internet users, its detection is of great interest to both anti-malware industry and researchers. In recent years, machine learning-based systems have been successfully deployed in malware detection, in which different kinds of classifiers are built based on the training samples using different feature representations. Unfortunately, as classifiers become more widely deployed, the incentive for defeating them increases. In this paper, we explore the adversarial machine learning in malware detection. In particular, on the basis of a learning-based classifier with the input of Windows Application Programming Interface (API) calls extracted from the Portable Executable (PE) files, we present an effective evasion attack model (named EvnAttack) by considering different contributions of the features to the classification problem. To be resilient against the evasion attack, we further propose a secure-learning paradigm for malware detection (named SecDefender), which not only adopts classifier retraining technique but also introduces the security regularization term which considers the evasion cost of feature manipulations by attackers to enhance the system security. Comprehensive experimental results on the real sample collections from Comodo Cloud Security Center demonstrate the effectiveness of our proposed methods. 
    more » « less
  5. Kim, JH.; Singh, M.; Khan, J.; Tiwary, U.S.; Sur, M.; Singh, D. (Ed.)
    Cyberattacks and malware infestation are issues that surround most operating systems (OS) these days. In smartphones, Android OS is more susceptible to malware infection. Although Android has introduced several mechanisms to avoid cyberattacks, including Google Play Protect, dynamic permissions, and sign-in control notifications, cyberattacks on Android-based phones are prevalent and continuously increasing. Most malware apps use critical permissions to access resources and data to compromise smartphone security. One of the key reasons behind this is the lack of knowledge for the usage of permissions in users. In this paper, we introduce Permission-Educator, a cloud-based service to educate users about the permissions associated with the installed apps in an Android-based smartphone. We developed an Android app as a client that allows users to categorize the installed apps on their smartphones as system or store apps. The user can learn about permissions for a specific app and identify the app as benign or malware through the interaction of the client app with the cloud service. We integrated the service with a web server that facilitates users to upload any Android application package file, i.e. apk, to extract information regarding the Android app and display it to the user. 
    more » « less