skip to main content


Title: Wideband Full-Duplex Phased Array with Joint Transmit and Receive Beamforming: Optimization and Rate Gains
Full-duplex (FD) wireless and phased arrays are both promising techniques that can significantly improve data rates in future wireless networks. However, integrating FD with transmit (Tx) and receive (Rx) phased arrays is extremely challenging, due to the large number of self-interference (SI) channels. Previous work relies on either RF canceller hardware or on analog/digital Tx beamforming (TxBF) to achieve SI cancellation (SIC). However, Rx beamforming (RxBF) and the data rate gain introduced by FD nodes employing beamforming have not been considered yet. We study FD phased arrays with joint TxBF and RxBF with the objective of achieving improved FD data rates. The key idea is to carefully select the TxBF and RxBF weights to achieve wideband RF SIC in the spatial domain with minimal TxBF and RxBF gain losses. Essentially, TxBF and RxBF are repurposed, thereby not requiring specialized RF canceller circuitry. We formulate the corresponding optimization problem and develop an iterative algorithm to obtain an approximate solution with provable performance guarantees. Using SI channel measurements and datasets, we extensively evaluate the performance of the proposed approach in different use cases under various network settings. The results show that an FD phased array with 9/36/72 elements can cancel the total SI power to below the noise floor with sum TxBF and RxBF gain losses of 10.6/7.2/6.9 dB, even at Tx power level of 30 dBm. Moreover, the corresponding FD rate gains are at least 1.33/1.66/1.68×.  more » « less
Award ID(s):
1650685
NSF-PAR ID:
10135665
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Mobihoc ’19: The Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing, July 2–5, 2019, Catania, Italy.
Page Range / eLocation ID:
361 to 370
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Full-duplex (FD) wireless and phased arrays are both promising techniques that can significantly improve data rates in future wireless networks. However, integrating FD with transmit (Tx) and receive (Rx) phased arrays is extremely challenging, due to the large number of self-interference (SI) channels. Previous work relies on either RF canceller hardware or on analog/digital Tx beamforming (TxBF) to achieve SI cancellation (SIC). However, Rx beamforming (RxBF) and the data rate gain introduced by FD nodes employing beamforming have not been considered yet. We study FD phased arrays with joint TxBF and RxBF with the objective of achieving improved FD data rates. The key idea is to carefully select the TxBF and RxBF weights to achieve wideband RF SIC in the spatial domain with minimal TxBF and RxBF gain losses. Essentially, TxBF and RxBF are repurposed, thereby not requiring specialized RF canceller circuitry. We formulate the corresponding optimization problem and develop an iterative algorithm to obtain an approximate solution with provable performance guarantees. Using SI channel measurements and datasets, we extensively evaluate the performance of the proposed approach in different use cases under various network settings. The results show that an FD phased array with 9/36/72 elements can cancel the total SI power to below the noise floor with sum TxBF and RxBF gain losses of 10.6/7.2/6.9 dB, even at Tx power level of 30 dBm. Moreover, the corresponding FD rate gains are at least 1.33/1.66/1.68× 
    more » « less
  2. Full-duplex (FD) wireless is an emerging wireless communication paradigm where the transmitter and the receiver operate simultaneously at the same frequency. One major challenge in realizing FD wireless is the interference of the TX signal saturating the receiver, commonly referred to self-interference (SI). Traditionally, self-interference cancellation (SIC) is achieved in the antenna, RF/analog, and digital domains. In the antenna domain, SIC can be achieved using a pair of separate TX and RX antennas, or using a single antenna shared by the TX and RX through a magnetic circulator, which is usually bulky, expensive, and not integrable with CMOS. Recent advances, however, have shown the feasibility of realizing high-performance non-reciprocal circulators in CMOS based on spatio-temporal modulation. In this work, we demonstrate a high power handling FD radio using a USRP SDR which employs SIC (i) at the antenna interface using a watt-level power-handling CMOS integrated, magnetic-free circulator, (ii) in the RF domain using a compact RF canceler, and (iii) in the digital domain. Our prototyped FD radio achieves +95 dB overall SIC at +15dBm TX power level. We analyze the effects of the circulator TX-RX non-linearity on the total achievable SIC 
    more » « less
  3. Full-duplex (FD) wireless is an emerging wireless communication paradigm where the transmitter and the receiver operate simultaneously at the same frequency. One major challenge in realizing FD wireless is the interference of the TX signal saturating the receiver, commonly referred to self-interference (SI). Traditionally, self-interference cancellation (SIC) is achieved in the antenna, RF/analog, and digital domains. In the antenna domain, SIC can be achieved using a pair of separate TX and RX antennas, or using a single antenna shared by the TX and RX through a magnetic circulator, which is usually bulky, expensive, and not integrable with CMOS. Recent advances, however, have shown the feasibility of realizing high-performance non-reciprocal circulators in CMOS based on spatio-temporal modulation. In this work, we demonstrate a high power handling FD radio using a USRP SDR which employs SIC (i) at the antenna interface using a watt-level power-handling CMOS integrated, magnetic-free circulator, (ii) in the RF domain using a compact RF canceler, and (iii) in the digital domain. Our prototyped FD radio achieves +95 dB overall SIC at +15dBm TX power level. We analyze the effects of the circulator TX-RX non-linearity on the total achievable SIC. 
    more » « less
  4. Wireless systems which can simultaneously transmit and receive (STAR) are gaining significant academic and commercial interest due to their wide range of applications such as full-duplex (FD) wireless communication and FMCW radar. FD radios, where the transmitter (TX) and the receiver (RX) operate simultaneously at the same frequency, can potentially double the data rate at the physical layer and can provide many other advantages in the higher layers. The antenna interface of an FD radio is typically built using a multi-antenna system, or a single antenna through a bulky magnetic circulator or a lossy reciprocal hybrid. However, recent advances in CMOS-integrated circulators through spatio-temporal conductivity modulation have shown promise and potential to replace traditional bulky magnetic circulators. However, unlike magnetic circulators, CMOS-integrated non-magnetic circulators will introduce some nonlinear distortion and spurious tones arising from their clock circuitry. In this work, we present an FD radio using a highly linear CMOS integrable circulator, a frequency-flat RF canceler, and a USRP software-defined radio (SDR). At TX power level of +15 dBm, the implemented FD radio achieves a self-interference cancellation (SIC) of +55dB from the circulator and RF canceler in the RF domain, and an overall SIC of +95dB together with SIC in the digital domain. To analyze the non-linear phenomena of the CMOS circulator, we calculated the link level data-rate gain in an FD system with imperfect SIC and then extended this calculation to count the effect of TX-RX non-linearity of the circulator. In addition, we provide a qualitative discussion on the spurious tone responses of the circulator due to the clocking imperfections and non-linearity. 
    more » « less
  5. Wireless systems which can simultaneously transmit and receive (STAR) are gaining significant academic and commercial interest due to their wide range of applications such as full-duplex (FD) wireless communication and FMCW radar. FD radios, where the transmitter (TX) and the receiver (RX) operate simultaneously at the same frequency, can potentially double the data rate at the physical layer and can provide many other advantages in the higher layers. The antenna interface of an FD radio is typically built using a multi-antenna system, or a single antenna through a bulky magnetic circulator or a lossy reciprocal hybrid. However, recent advances in CMOS-integrated circulators through spatio-temporal conductivity modulation have shown promise and potential to replace traditional bulky magnetic circulators. However, unlike magnetic circulators, CMOS-integrated non-magnetic circulators will introduce some nonlinear distortion and spurious tones arising from their clock circuitry. In this work, we present an FD radio using a highly linear CMOS integrable circulator, a frequency-flat RF canceler, and a USRP software-defined radio (SDR). At TX power level of +15 dBm, the implemented FD radio achieves a self-interference cancellation (SIC) of +55 dB from the circulator and RF canceler in the RF domain, and an overall SIC of +95 dB together with SIC in the digital domain. To analyze the non-linear phenomena of the CMOS circulator, we calculated the link level data-rate gain in an FD system with imperfect SIC and then extended this calculation to count the effect of TX-RX non-linearity of the circulator. In addition, we provide a qualitative discussion on the spurious tone responses of the circulator due to the clocking imperfections and non-linearity. Index Terms—Circulator, CMOS, conductivity modulation, full-duplex, non-reciprocity, self-interference cancellation. 
    more » « less