Computing technology has enabled massive digital traces of our personal lives to be collected and stored. These datasets play an important role in numerous real-life applications and research analysis, such as contact tracing for COVID 19, but they contain sensitive information about individuals. When managing these datasets, privacy is usually addressed as an afterthought, engineered on top of a database system optimized for performance and usability. This has led to a plethora of unexpected privacy attacks in the news. Specialized privacy-preserving solutions usually require a group of privacy experts and they are not directly transferable to other domains. There is an urgent need for a generally trustworthy database system that offers end-to-end security and privacy guarantees. In this tutorial, we will first describe the security and privacy requirements for database systems in different settings and cover the state-of-the-art tools that achieve these requirements. We will also show challenges in integrating these techniques together and demonstrate the design principles and optimization opportunities for these security and privacy-aware database systems.
more »
« less
Privacy Changes Everything
We are storing and querying datasets with the private information of individuals at an unprecedented scale in settings ranging from IoT devices in smart homes to mining enormous collections of click trails for targeted advertising. Here, the privacy of the people described in these datasets is usually addressed as an afterthought, engineered on top of a DBMS optimized for performance. At best, these systems support security or managing access to sensitive data. This status quo has brought us a plethora of data breaches in the news. In response, governments are stepping in to enact privacy regulations such as the EU’s GDPR. We posit that there is an urgent need for trustworthy database system that offer end-to-end privacy guarantees for their records with user interfaces that closely resemble that of a relational database. As we shall see, these guarantees inform everything in the database’s design from how we store data to what query results we make available to untrusted clients. In this position paper we first define trustworthy database systems and put their research challenges in the context of relevant tools and techniques from the security community. We then use this backdrop to walk through the “life of a query” in a trustworthy database system. We start with the query parsing and follow the query’s path as the system plans, optimizes, and executes it. We highlight how we will need to rethink each step to make it efficient, robust, and usable for database clients.
more »
« less
- Award ID(s):
- 1846447
- PAR ID:
- 10135704
- Date Published:
- Journal Name:
- Lecture notes in computer science
- Volume:
- 11721
- Page Range / eLocation ID:
- 96-111
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Wang, H. (Ed.)Once upon a time databases were structured, one size fitted all and they resided on machines that were trustworthy and even when they failed, they simply crashed. This era has come and gone as eloquently stated by Stonebraker and Cetintemel [16]. We now have key-value stores, graph databases, text databases, and a myriad of unstructured data repositories. The database community has wholeheartedly accepted the fact that the same information might come in different formats, modes and representations. We also accept that data might not be ”clean” and that data might need to be ”cleaned” due to the diverse sources of information. However, we, as a database community still cling to our 20th century belief that databases always reside on trustworthy, honest servers. Although the database community has always considered fault-tolerance as an integral building block of data management (remember ”D” in ACID is for Durability), we still have trouble accepting the fact that not all failures are simply crash failures and might in fact involve malicious and non-trustworthy infrastructure. This notion has been challenged and abandoned by many other Computer Science communities, most notably the security and the distributed systems communities. The rise of the cloud computing paradigm as well as the rapid popularity of blockchains demand a rethinking of our na¨ıve, comfortable beliefs in an ideal benign infrastructure. In the cloud, clients store their sensitive data in remote servers owned and operated by cloud providers. The Security and Crypto Communities have made significant inroads to protect both data and access privacy from malicious untrusted storage providers using encryption and oblivious data stores. The Distributed Systems and the Systems Communities have developed consensus protocols to ensure the fault-tolerant maintenance of data residing on untrusted, malicious infrastructure. However, these solutions face significant scalability and performance challenges when incorporated in large scale data repositories. Novel database designs need to directly address the natural tension between performance, fault-tolerance and trustworthiness. This is a perfect setting for the database community to lead and guide.more » « less
-
When transferring sensitive data to a non-trusted party, end-users require that the data be kept private. Mobile and IoT application developers want to leverage the sensitive data to provide better user experience and intelligent services. Unfortunately, existing programming abstractions make it impossible to reconcile these two seemingly conflicting objectives. In this paper, we present a novel programming mechanism for distributed managed execution environments that hides sensitive user data, while enabling developers to build powerful and intelligent applications, driven by the properties of the sensitive data. Specifically, the sensitive data is never revealed to clients, being protected by the runtime system. Our abstractions provide declarative and configurable data query interfaces, enforced by a lightweight distributed runtime system. Developers define when and how clients can query the sensitive data’s properties (i.e., how long the data remains accessible, how many times its properties can be queried, which data query methods apply, etc.). Based on our evaluation, we argue that integrating our novel mechanism with the Java Virtual Machine (JVM) can address some of the most pertinent privacy problems of IoT and mobile applications.more » « less
-
Federated learning (FL) is an increasingly popular approach for machine learning (ML) when the training dataset is highly distributed. Clients perform local training on their datasets and the updates are then aggregated into the global model. Existing protocols for aggregation are either inefficient or don’t consider the case of malicious actors in the system. This is a major barrier to making FL an ideal solution for privacy-sensitive ML applications. In this talk, I will present ELSA, a secure aggregation protocol for FL that breaks this barrier - it is efficient and addresses the existence of malicious actors (clients + servers) at the core of its design. Similar to prior work Prio and Prio+, ELSA provides a novel secure aggregation protocol built out of distributed trust across two servers that keeps individual client updates private as long as one server is honest, defends against malicious clients, and is efficient end-to-end. Compared to prior works, the distinguishing theme in ELSA is that instead of the servers generating cryptographic correlations interactively, the clients act as untrusted dealers of these correlations without compromising the protocol’s security. This leads to a much faster protocol while also achieving stronger security at that efficiency compared to prior work. We introduce new techniques that retain privacy even when a server is malicious at a small added cost of 7-25% in runtime with a negligible increase in communication over the case of a semi-honest server. ELSA improves end-to-end runtime over prior work with similar security guarantees by big margins - single-aggregator RoFL by up to 305x (for the models we consider), and distributed-trust Prio by up to 8x (with up to 16x faster server-side protocol). Additionally, ELSA can be run in a bandwidth-saver mode for clients who are geographically bandwidth-constrained - an important property that is missing from prior works.more » « less
-
Federated learning (FL) is an increasingly popular approach for machine learning (ML) in cases where the training dataset is highly distributed. Clients perform local training on their datasets and the updates are then aggregated into the global model. Existing protocols for aggregation are either inefficient, or don’t consider the case of malicious actors in the system. This is a major barrier in making FL an ideal solution for privacy-sensitive ML applications. We present ELSA, a secure aggregation protocol for FL, which breaks this barrier - it is efficient and addresses the existence of malicious actors at the core of its design. Similar to prior work on Prio and Prio+, ELSA provides a novel secure aggregation protocol built out of distributed trust across two servers that keeps individual client updates private as long as one server is honest, defends against malicious clients, and is efficient end-to-end. Compared to prior works, the distinguishing theme in ELSA is that instead of the servers generating cryptographic correlations interactively, the clients act as untrusted dealers of these correlations without compromising the protocol’s security. This leads to a much faster protocol while also achieving stronger security at that efficiency compared to prior work. We introduce new techniques that retain privacy even when a server is malicious at a small added cost of 7-25% in runtime with negligible increase in communication over the case of semi-honest server. Our work improves end-to-end runtime over prior work with similar security guarantees by big margins - single-aggregator RoFL by up to 305x (for the models we consider), and distributed trust Prio by up to 8x.more » « less
An official website of the United States government

