skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Living with Two Genomes: Grafting and Its Implications for Plant Genome-to-Genome Interactions, Phenotypic Variation, and Evolution
Plant genomes interact when genetically distinct individuals join, or are joined, together. Individuals can fuse in three contexts: artificial grafts, natural grafts, and host–parasite interactions. Artificial grafts have been studied for decades and are important platforms for studying the movement of RNA, DNA, and protein. Yet several mysteries about artificial grafts remain, including the factors that contribute to graft incompatibility, the prevalence of genetic and epigenetic modifications caused by exchanges between graft partners, and the long-term effects of these modifications on phenotype. Host–parasite interactions also lead to the exchange of materials, and RNA exchange actively contributes to an ongoing arms race between parasite virulence and host resistance. Little is known about natural grafts except that they can be frequent and may provide opportunities for evolutionary innovation through genome exchange. In this review, we survey our current understanding about these three mechanisms of contact, the genomic interactions that result, and the potential evolutionary implications.  more » « less
Award ID(s):
1741627 1655808
PAR ID:
10135974
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Annual Review of Genetics
Volume:
53
Issue:
1
ISSN:
0066-4197
Page Range / eLocation ID:
195 to 215
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract An animal's social behaviour both influences and changes in response to its parasites. Here we consider these bidirectional links between host social behaviours and parasite infection, both those that occur from ecological vs evolutionary processes. First, we review how social behaviours of individuals and groups influence ecological patterns of parasite transmission. We then discuss how parasite infection, in turn, can alter host social interactions by changing the behaviour of both infected and uninfected individuals. Together, these ecological feedbacks between social behaviour and parasite infection can result in important epidemiological consequences. Next, we consider the ways in which host social behaviours evolve in response to parasites, highlighting constraints that arise from the need for hosts to maintain benefits of sociality while minimizing fitness costs of parasites. Finally, we consider how host social behaviours shape the population genetic structure of parasites and the evolution of key parasite traits, such as virulence. Overall, these bidirectional relationships between host social behaviours and parasites are an important yet often underappreciated component of population-level disease dynamics and host–parasite coevolution. 
    more » « less
  2. Understanding the role of biotic interactions in shaping natural communities is a long-standing challenge in ecology. It is particularly pertinent to parasite communities sharing the same host communities and individuals, as the interactions among parasites—both competition and facilitation—may have far-reaching implications for parasite transmission and evolution. Aggregated parasite burdens may suggest that infected host individuals are either more prone to infection, or that infection by a parasite species facilitates another, leading to a positive parasite–parasite interaction. However, parasite species may also compete for host resources, leading to the prediction that parasite–parasite associations would be generally negative, especially when parasite species infect the same host tissue, competing for both resources and space. We examine the presence and strength of parasite associations using hierarchical joint species distribution models fitted to data on resident parasite communities sampled on over 1300 small mammal individuals across 22 species and their resident parasite communities. On average, we detected more positive associations between infecting parasite species than negative, with the most negative associations occurring when two parasite species infected the same host tissue, suggesting that parasite species associations may be quantifiable from observational data. Overall, our findings suggest that parasite community prediction at the level of the individual host is possible, and that parasite species associations may be detectable in complex multi-species communities, generating many hypotheses concerning the effect of host community changes on parasite community composition, parasite competition within infected hosts, and the drivers of parasite community assembly and structure. 
    more » « less
  3. Abstract Host–parasite interactions may often be subject to opposing evolutionary forces, which likely influence the evolutionary trajectories of both partners. Natural selection and genetic drift are two major evolutionary forces that act in host and parasite populations. Further, population size is a significant determinant of the relative strengths of these forces. In small populations, drift may undermine the persistence of beneficial alleles, potentially impeding host adaptation to parasites. Here, we investigate two questions: (a) can selection pressure for increased resistance in small, susceptible host populations overcome the effects of drift and (b) can resistance be maintained in small host populations? To answer these questions, we experimentally evolved the hostCaenorhabditis elegansagainst its bacterial parasite,Serratia marcescens, for 13 host generations. We found that strong selection favouring increased host resistance was insufficient to counteract drift in small populations, resulting in persistently high host mortality. Additionally, in small populations of resistant hosts, we found that selection for the maintenance of resistance is not always sufficient to curb the loss of resistance. We compared these results with selection in large host populations. We found that initially resistant, large host populations were able to maintain high levels of resistance. Likewise, initially susceptible, large host populations were able to gain resistance to the parasite. These results show that strong selection pressure for survival is not always sufficient to counteract drift. In consideration ofC.elegans natural population dynamics, we suggest that drift may often impede selection in nature. 
    more » « less
  4. Pairwise host–parasite relationships are typically embedded in broader networks of ecological interactions, which have the potential to shape parasite evolutionary trajectories. Understanding this ‘community context’ of pathogen evolution is vital for wildlife, agricultural and human systems alike, as pathogens typically infect more than one host—and these hosts may have independent ecological relationships. Here, we introduce an eco-evolutionary model examining ecological feedback across a range of host–host interactions. Specifically, we analyse a model of the evolution of virulence of a parasite infecting two hosts exhibiting competitive, mutualistic or exploitative relationships. We first find that parasite specialism is necessary for inter-host interactions to impact parasite evolution. Furthermore, we find generally that increasing competition between hosts leads to higher shared parasite virulence while increasing mutualism leads to lower virulence. In exploitative host–host interactions, the particular form of parasite specialization is critical—for instance, specialization in terms of onward transmission, host tolerance or intra-host pathogen growth rate lead to distinct evolutionary outcomes under the same host–host interactions. Our work provides testable hypotheses for multi-host disease systems, predicts how changing interaction networks may impact virulence evolution and broadly demonstrates the importance of looking beyond pairwise relationships to understand evolution in realistic community contexts. 
    more » « less
  5. Abstract Parasite transmission is thought to depend on both parasite exposure and host susceptibility to infection; however, the relative contribution of these two factors to epidemics remains unclear. We used interactions between an aquatic host and its fungal parasite to evaluate how parasite exposure and host susceptibility interact to drive epidemics. In six lakes, we tracked the following factors from pre‐epidemic to epidemic emergence: (1) parasite exposure (measured observationally as fungal spores attacking wild‐caught hosts), (2) host susceptibility (measured experimentally as the number of fungal spores required to produce terminal infection), (3) host susceptibility traits (barrier resistance and internal clearance, both quantified with experimental assays), and (4) parasite prevalence (measured observationally from wild‐caught hosts). Tracking these factors over 6 months and in almost 7,000 wild‐caught hosts provided key information on the drivers of epidemics. We found that epidemics depended critically on the interaction of exposure and susceptibility; epidemics only emerged when a host population’s level of exposure exceeded its individuals’ capacity for recovery. Additionally, we found that host internal clearance traits (the hemocyte response) were critical in regulating epidemics. Our study provides an empirical demonstration of how parasite exposure and host susceptibility interact to inhibit or drive disease in natural systems and demonstrates that epidemics can be delayed by asynchronicity in the two processes. Finally, our results highlight how individual host traits can scale up to influence broad epidemiological patterns. 
    more » « less