skip to main content


Title: Winter Weather Whiplash: Impacts of Meteorological Events Misaligned With Natural and Human Systems in Seasonally Snow‐Covered Regions
Abstract

“Weather whiplash” is a colloquial phrase for describing an extreme event that includes shifts between two opposing weather conditions. Prior media coverage and research on these types of extremes have largely ignored winter weather events. However, rapid swings in winter weather can result in crossing from frozen to unfrozen conditions, or vice versa; thus, the potential impact of these types of events on coupled human and natural systems may be large. Given rapidly changing winter conditions in seasonally snow‐covered regions, there is a pressing need for a deeper understanding of such events and the extent of their impacts to minimize their risks. Here we introduce the concept of winter weather whiplash, defined as a class of extreme event in which a collision of unexpected conditions produces a forceful, rapid, back‐and‐forth change in winter weather that induces an outsized impact on coupled human and natural systems. Using a series of case studies, we demonstrate that the effects of winter weather whiplash events depend on the natural and human context in which they occur, and discuss how these events may result in the restructuring of social and ecological systems. We use the long‐term hydrometeorological record at the Hubbard Brook Experimental Forest in New Hampshire, USA to demonstrate quantitative methods for delineating winter weather whiplash events and their biophysical impacts. Ultimately, we argue that robust conceptual and quantitative frameworks for understanding winter weather whiplash events will contribute to the ways in which we mitigate and adapt to winter climate change in vulnerable regions.

 
more » « less
Award ID(s):
1637685
NSF-PAR ID:
10459600
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Earth's Future
Volume:
7
Issue:
12
ISSN:
2328-4277
Page Range / eLocation ID:
p. 1434-1450
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Coastal flooding is one of the most costly and deadly natural hazards facing the U.S. mid-Atlantic region today. Impacts in this heavily populated and economically significant region are caused by a combination of the location’s exposure and natural forcing from storms and sea level rise. Tropical cyclones (TCs) and midlatitude (ML) weather systems each have caused extreme coastal flooding in the region. Skew surge was computed over each tidal cycle for the past 40 years (1980–2019) at several tide gauges in the Delaware and Chesapeake Bays to compare the meteorological component of surge for each weather type. Although TCs cause higher mean surges, ML weather systems can produce surges just as severe and occur much more frequently, peaking in the cold season (November–March). Of the top 10 largest surge events, TCs account for 30%–45% in the Delaware and upper Chesapeake Bays and 40%–45% in the lower Chesapeake Bay. This percentage drops to 10%–15% for larger numbers of events in all regions. Mean sea level pressure and 500-hPa geopotential height (GPH) fields of the top 10 surge events from ML weather systems show a low pressure center west-southwest of “Delmarva” and a semistationary high pressure center to the northeast prior to maximum surge, producing strong easterly winds. Low pressure centers intensify under upper-level divergence as they travel eastward, and the high pressure centers are near the GPH ridges. During lower-bay events, the low pressure centers develop farther south, intensifying over warmer coastal waters, with a south-shifted GPH pattern relative to upper-bay events. Significance Statement Severe coastal flooding is a year-round threat in the U.S. mid-Atlantic region, and impacts are projected to increase in magnitude and frequency. Research into the meteorological contribution to storm surge, separate from mean sea level and tidal phase, will increase the scientific understanding and monitoring of changing atmospheric conditions. Tropical cyclones and midlatitude weather systems both significantly impact the mid-Atlantic region during different times of year. However, climate change may alter the future behavior of these systems differently. Understanding the synoptic environment and quantifying the surge response and subbay geographic variability of each weather system in this region will aid in public awareness, near-term emergency preparation, and long-term planning for coastal storms. 
    more » « less
  2. Giannini, Alessandra (Ed.)
    Extreme weather events are expected to increase in frequency and severity due to climate change. However, we lack an understanding of how recent extreme weather events have impacted the U.S. population. We surveyed a representative sample of the U.S. public (n = 1071) in September 2021 about self-reported impacts they experienced from six types of extreme weather events within the past three years. We find that an overwhelming majority (86%) of the U.S. public reported being at least slightly impacted by an extreme weather event, and one-third (34%) reported being either very or extremely impacted by one or more types of extreme weather events. We clustered respondents into four impact groups, representing a composite of self-reported impacts from multiple types of extreme weather events. Respondents in the highest extreme weather impact group are more than 2.5 times as likely to identify as Black or Hispanic and 1.89 times more likely to live in a household with income levels below the Federal poverty level. We also observe reports of higher extreme weather impacts from respondents who are female, do not have a bachelor’s degree and live in a rural area. Our results indicate that extreme weather impacts are being felt by a broad cross-section of the U.S. public, with the highest impacts being disproportionately reported by populations that have previously been found to be more vulnerable to natural disasters and other extreme events. 
    more » « less
  3. Abstract River deltas all over the world are sinking beneath sea-level rise, causing significant threats to natural and social systems. This is due to the combined effects of anthropogenic changes to sediment supply and river flow, subsidence, and sea-level rise, posing an immediate threat to the 500–1,000 million residents, many in megacities that live on deltaic coasts. The Mississippi River Deltaic Plain (MRDP) provides examples for many of the functions and feedbacks, regarding how human river management has impacted source-sink processes in coastal deltaic basins, resulting in human settlements more at risk to coastal storms. The survival of human settlement on the MRDP is arguably coupled to a shifting mass balance between a deltaic landscape occupied by either land built by the Mississippi River or water occupied by the Gulf of Mexico. We developed an approach to compare 50 % L:W isopleths (L:W is ratio of land to water) across the Atchafalaya and Terrebonne Basins to test landscape behavior over the last six decades to measure delta instability in coastal deltaic basins as a function of reduced sediment supply from river flooding. The Atchafalaya Basin, with continued sediment delivery, compared to Terrebonne Basin, with reduced river inputs, allow us to test assumptions of how coastal deltaic basins respond to river management over the last 75 years by analyzing landward migration rate of 50 % L:W isopleths between 1932 and 2010. The average landward migration for Terrebonne Basin was nearly 17,000 m (17 km) compared to only 22 m in Atchafalaya Basin over the last 78 years (p\0.001), resulting in migration rates of 218 m/year (0.22 km/year) and\0.5 m/year, respectively. In addition, freshwater vegetation expanded in Atchafalaya Basin since 1949 compared to migration of intermediate and brackish marshes landward in the Terrebonne Basin. Changes in salt marsh vegetation patterns were very distinct in these two basins with gain of 25 % in the Terrebonne Basin compared to 90 % decrease in the Atchafalaya Basin since 1949. These shifts in vegetation types as L:W ratio decreases with reduced sediment input and increase in salinity also coincide with an increase in wind fetch in Terrebonne Bay. In the upper Terrebonne Bay, where the largest landward migration of the 50 % L:W ratio isopleth occurred, we estimate that the wave power has increased by 50–100 % from 1932 to 2010, as the bathymetric and topographic conditions changed, and increase in maximum storm-surge height also increased owing to the landward migration of the L:W ratio isopleth. We argue that this balance of land relative to water in this delta provides a much clearer understanding of increased flood risk from tropical cyclones rather than just estimates of areal land loss. We describe how coastal deltaic basins of the MRDP can be used as experimental landscapes to provide insights into how varying degrees of sediment delivery to coastal deltaic floodplains change flooding risks of a sinking delta using landward migrations of 50 % L:W isopleths. The nonlinear response of migrating L:W isopleths as wind fetch increases is a critical feedback effect that should influence human river-management decisions in deltaic coast. Changes in land area alone do not capture how corresponding landscape degradation and increased water area can lead to exponential increase in flood risk to human populations in low-lying coastal regions. Reduced land formation in coastal deltaic basins (measured by changes in the land:water ratio) can contribute significantly to increasing flood risks by removing the negative feedback of wetlands on wave and storm-surge that occur during extreme weather events. Increased flood risks will promote population migration as human risks associated with living in a deltaic landscape increase, as land is submerged and coastal inundation threats rise. These system linkages in dynamic deltaic coasts define a balance of river management and human settlement dependent on a certain level of land area within coastal deltaic basins (L). 
    more » « less
  4. Variability in hydroclimate impacts natural and human systems worldwide. In particular, both decadal variability and extreme precipitation events have substantial effects and are anticipated to be strongly influenced by climate change. From a practical perspective, these impacts will be felt relative to the continuously evolving background climate. Removing the underlying forced trend is therefore necessary to assess the relative impacts, but to date, the small size of most climate model ensembles has made it difficult to do this. Here we use an archive of large ensembles run under a high-emissions scenario to determine how decadal “megadrought” and “megapluvial” events—and shorter-term precipitation extremes—will vary relative to that changing baseline. When the trend is retained, mean state changes dominate: In fact, soil moisture changes are so large in some regions that conditions that would be considered a megadrought or pluvial event today are projected to become average. Time-of-emergence calculations suggest that in some regions including Europe and western North America, this shift may have already taken place and could be imminent elsewhere: Emergence of drought/pluvial conditions occurs over 61% of the global land surface (excluding Antarctica) by 2080. Relative to the changing baseline, megadrought/megapluvial risk either will not change or is slightly reduced. However, the increased frequency and intensity of both extreme wet and dry precipitation events will likely present adaptation challenges beyond anything currently experienced. In many regions, resilience against future hazards will require adapting to an ever-changing “normal,” characterized by unprecedented aridification/wetting punctuated by more severe extremes. 
    more » « less
  5. Abstract

    In many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short‐term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well‐developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments. Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short‐ and long‐term. We summarize the current understanding of storm‐induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions.

     
    more » « less