skip to main content


Title: Empirical observations and numerical modelling of tides, channel morphology, and vegetative effects on accretion in a restored tidal marsh
Abstract

Tidal marshes form at the confluence between estuarine and marine environments where tidal movement regulates their developmental processes. Here, we investigate how the interplay between tides, channel morphology, and vegetation affect sediment dynamics in a low energy tidal marsh at the Paul S. Sarbanes Ecosystem Restoration Project at Poplar Island. Poplar Island is an active restoration site where fine‐grained material dredged from navigation channels in the upper Chesapeake Bay are being used to restore remote tidal marsh habitat toward the middle bay (Maryland, USA). Tidal currents were measured over multiple tidal cycles in the inlets and tidal creeks of one marsh at Poplar Island, Cell 1B, using Acoustic Doppler Current Profilers (ADCP) to estimate water fluxes throughout the marsh complex. Sediment fluxes were estimated using acoustic backscatter recorded by ADCPs and validated against total suspended solid measurements taken on site. A high‐resolution geomorphic survey was conducted to capture channel cross sections and tidal marsh morphology. We integrated simple numerical models built in Delft3d with empirical observations to identify which eco‐geomorphological factors influence sediment distribution in various channel configurations with differing vegetative characteristics. Channel morphology influences flood‐ebb dominance in marshes, where deep, narrow channels promote high tidal velocities and incision, increasing sediment suspension and reducing resilience in marshes at Poplar Island. Our numerical models suggest that accurately modelling plant phenology is vital for estimating sediment accretion rates. In‐situ observations indicate that Poplar Island marshes are experiencing erosion typical for many Chesapeake Bay islands. Peak periods of sediment suspension frequently coincide with the largest outflows of water during ebb tides resulting in large sediment deficits. Ebb dominance (net sediment export) in tidal marshes is likely amplified by sea‐level rise and may lower marsh resilience. We couple field observations with numerical models to understand how tidal marsh morphodynamics contribute to marsh resilience. © 2019 John Wiley & Sons, Ltd.

 
more » « less
Award ID(s):
1756244
NSF-PAR ID:
10457600
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Earth Surface Processes and Landforms
Volume:
44
Issue:
11
ISSN:
0197-9337
Page Range / eLocation ID:
p. 2223-2235
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Coastal communities increasingly invest in natural and nature‐based features (e.g., living shorelines) as a strategy to protect shorelines and enhance coastal resilience. Tidal marshes are a common component of these strategies because of their capacity to reduce wave energy and storm surge impacts. Performance metrics of restoration success for living shorelines tend to focus on how the physical structure of the created marsh enhances shoreline protection via proper elevation and marsh plant presence. These metrics do not fully evaluate the level of marsh ecosystem development. In particular, the presence of key marsh bivalve species can indicate the capability of the marsh to provide non‐protective services of value, such as water quality improvement and habitat provision. We observed an unexpected low to no abundance of the filter‐feeding ribbed mussel,Geukensia demissa, in living shoreline marshes throughout Chesapeake Bay. In salt marsh ecosystems along the Atlantic Coast of the United States, ribbed mussels improve water quality, enhance nutrient removal, stabilize the marsh, and facilitate long‐term sustainability of the habitat. Through comparative field surveys and experiments within a chronosequence of 13 living shorelines spanning 2–16 years since construction, we examined three factors we hypothesized may influence recruitment of ribbed mussels to living shoreline marshes: (1) larval access to suitable marsh habitat, (2) sediment quality of low marsh (i.e., potential mussel habitat), and (3) availability of high‐quality refuge habitat. Our findings suggest that at most sites larval mussels are able to access and settle on living shoreline created marshes behind rock sill structures, but that most recruits are likely not surviving. Sediment organic matter (OM) and plant density were correlated with mussel abundance, and sediment OM increased with marsh age, suggesting that living shoreline design (e.g., sand fill, planting grids) and lags in ecosystem development (sediment properties) are reducing the survival of the young recruits. We offer potential modifications to living shoreline design and implementation practices that may facilitate self‐sustaining ribbed mussel populations in these restored habitats.

     
    more » « less
  2. As a symptom of accelerated sea level rise and historic impacts to tidal hydrology from agricultural and mosquito control activities, coastal marshes in the Northeastern U.S. are experiencing conversion to open water through edge loss, widening and headward erosion of tidal channels, and the formation and expansion of interior ponds. These interior ponds often form in high elevation marsh, confounding the notion applied in predictive modeling that salt marshes convert to open water when elevation falls below a critical surface inundation threshold. The installation of tidal channel extension features, or runnels, is a technique that has been implemented to reduce water levels and permit vegetation reestablishment in drowning coastal marshes, although there are limited data available to recommend its advisability. We report on 5 years of vegetation and hydrologic monitoring of two locations where a total of 600-m of shallow (0.15–0.30-m in diameter and depth) runnels were installed in 2015 and 2016 to enhance drainage, in the Pettaquamscutt River Estuary, in southern Rhode Island, United States. Results from this Before-After Control-Impact (BACI) designed study found that runnel installation successfully promoted plant recolonization, although runnels did not consistently promote increases in high marsh species presence or diversity. Runnels reduced the groundwater table (by 0.07–0.12 m), and at one location, the groundwater table experienced a 2-fold increase in the fraction of the in-channel tidal range that was observed in the marsh water table. We suggest that restoration of tidal hydrology through runnel installation holds promise as a tool to encourage revegetation and extend the lifespan of drowning coastal marshes where interior ponds are expanding. In addition, our study highlights the importance of considering the rising groundwater table as an important factor in marsh drowning due to expanding interior ponds found on the marsh platform.

     
    more » « less
  3. Recent mooring observations at a cross-channel section in Chesapeake Bay showed that internal solitary waves regularly appeared during certain phases of a tidal cycle and propagated from the deep channel to the shallow shoal. It was hypothesized that these waves resulted from the nonlinear steepening of internal lee waves generated by lateral currents over channel-shoal topography. In this study numerical modeling is conducted to investigate the interaction between lateral circulation and cross-channel topography and discern the generation mechanism of the internal lee waves. During ebb tides, lateral bottom Ekman forcing drives a counterclockwise (looking into estuary) lateral circulation, with strong currents advecting stratified water over the western flank of the deep channel and producing large isopycnal displacements. When the lateral flow becomes supercritical with respect to mode-2 internal waves, a mode-2 internal lee wave is generated on the flank of the deep channel and subsequently propagates onto the western shoal. When the bottom lateral flow becomes near-critical or supercritical with respect to mode-1 internal waves, the lee wave evolves into an internal hydraulic jump. On the shallow shoal, the lee waves or jumps evolve into internal bores of elevation.

     
    more » « less
  4. Abstract

    Sediment budget and sediment availability are direct metrics for evaluating the resilience of coastal bays to sea‐level rise (SLR). Here we use a high‐resolution numerical model of a tidally dominated marsh‐lagoon system to explore feedbacks between SLR and sediment dynamics. SLR augments tidal prism and inundation depth, facilitating sediment deposition on the marsh platform. At the same time, our results indicate that SLR enhances ebb‐dominated currents and increases sediment resuspension, reducing the sediment‐trapping capacity of tidal flats and bays and leading to a negative sediment budget for the entire system. This bimodal distribution of sediments budget trajectories will have a profound impact on the morphology of coastal bays, increasing the difference in elevation between salt marshes and tidal flats and potentially affecting intertidal ecosystems. Our results also clearly indicate that landforms lower with respect to the tidal frame are more affected by SLR than salt marshes.

     
    more » « less
  5. Global assessments predict the impact of sea-level rise on salt marshes with present-day levels of sediment supply from rivers and the coastal ocean. However, these assessments do not consider that variations in marsh extent and the related reconfiguration of intertidal area affect local sediment dynamics, ultimately controlling the fate of the marshes themselves. We conducted a meta-analysis of six bays along the United States East Coast to show that a reduction in the current salt marsh area decreases the sediment availability in estuarine systems through changes in regional-scale hydrodynamics. This positive feedback between marsh disappearance and the ability of coastal bays to retain sediments reduces the trapping capacity of the whole tidal system and jeopardizes the survival of the remaining marshes. We show that on marsh platforms, the sediment deposition per unit area decreases exponentially with marsh loss. Marsh erosion enlarges tidal prism values and enhances the tendency toward ebb dominance, thus decreasing the overall sediment availability of the system. Our findings highlight that marsh deterioration reduces the sediment stock in back-barrier basins and therefore compromises the resilience of salt marshes. 
    more » « less