Deep neural network models, especially Long Short Term Memory (LSTM), have shown great success in analyzing Electronic Health Records (EHRs) due to their ability to capture temporal dependencies in time series data. When applying the deep learning models to EHRs, we are generally confronted with two major challenges: high rate of missingness and time irregularity. Motivated by the original PACIFIER framework which utilized matrix decomposition for data imputation, we applied and further extended it by including three components: forecasting future events, a time-aware mechanism, and a subgroup basis approach. We evaluated the proposed framework with real-world EHRs which consists of 52,919 visits and 4,224,567 events on a task of early prediction of septic shock. We compared our work against multiple baselines including the original PACIFIER using both LSTM and Time-aware LSTM (T-LSTM). Experimental results showed that our proposed framework significantly outperformed all competitive baseline approaches. More importantly, the extracted interpretative latent patterns from subgroups could shed some lights for clinicians to discover the progression of septic shock patients.
more »
« less
ATTAIN: Attention-based Time-Aware LSTM Networks for Disease Progression Modeling.
Modeling patient disease progression using Electronic Health Records (EHRs) is critical to assist clinical decision making. Long-Short Term Memory (LSTM) is an effective model to handle sequential data, such as EHRs, but it encounters two major limitations when applied to EHRs: it is unable to interpret the prediction results and it ignores the irregular time intervals between consecutive events. To tackle these limitations, we propose an attention-based time-aware LSTM Networks (ATTAIN), to improve the interpretability of LSTM and to identify the critical previous events for current diagnosis by modeling the inherent time irregularity. We validate ATTAIN on modeling the progression of an extremely challenging disease, septic shock, by using real-world EHRs. Our results demonstrate that the proposed framework outperforms the state-of-the-art models such as RETAIN and T-LSTM. Also, the generated interpretative time-aware attention weights shed some lights on the progression behaviors of septic shock.
more »
« less
- Award ID(s):
- 1651909
- NSF-PAR ID:
- 10136491
- Date Published:
- Journal Name:
- In Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI-2019), pp. 4369-4375, Macao, China.
- Page Range / eLocation ID:
- 4369-4375
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Electronic healthcare records (EHRs) are comprehensive longitudinal collections of patient data that play a critical role in modeling the disease progression to facilitate clinical decision-making. Based on EHRs, in this work, we focus on sepsis – a broad syndrome that can develop from nearly all types of infections (e.g., influenza, pneumonia). The symptoms of sepsis, such as elevated heart rate, fever, and shortness of breath, are vague and common to other illnesses, making the modeling of its progression extremely challenging. Motivated by the recent success of a novel subsequence clustering approach: Toeplitz Inverse Covariance-based Clustering (TICC), we model the sepsis progression as a subsequence partitioning problem and propose a Multi-series Time-aware TICC (MT-TICC), which incorporates multi-series nature and irregular time intervals of EHRs. The effectiveness of MT-TICC is first validated via a case study using a real-world hand gesture dataset with ground-truth labels. Then we further apply it for sepsis progression modeling using EHRs. The results suggest that MT-TICC can significantly outperform competitive baseline models, including the TICC. More importantly, it unveils interpretable patterns, which sheds some light on better understanding the sepsis progression.more » « less
-
Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in developed countries. Identifying patients at high risk of progression to late AMD, the sight-threatening stage, is critical for clinical actions, including medical interventions and timely monitoring. Recently, deep-learning-based models have been developed and achieved superior performance for late AMD pre- diction. However, most existing methods are limited to the color fundus photography (CFP) from the last ophthalmic visit and do not include the longitudinal CFP history and AMD progression during the previous years’ visits. Patients in different AMD subphenotypes might have various speeds of progression in different stages of AMD disease. Capturing the progression information during the previous years’ visits might be useful for the prediction of AMD pro- gression. In this work, we propose a Contrastive-Attention-based Time-aware Long Short-Term Memory network (CAT-LSTM) to predict AMD progression. First, we adopt a convolutional neural network (CNN) model with a contrastive attention module (CA) to extract abnormal features from CFPs. Then we utilize a time-aware LSTM (T-LSTM) to model the patients’ history and consider the AMD progression information. The combination of disease pro- gression, genotype information, demographics, and CFP features are sent to T-LSTM. Moreover, we leverage an auto-encoder to represent temporal CFP sequences as fixed-size vectors and adopt k-means to cluster them into subphenotypes. We evaluate the pro- posed model based on real-world datasets, and the results show that the proposed model could achieve 0.925 on area under the receiver operating characteristic (AUROC) for 5-year late-AMD prediction and outperforms the state-of-the-art methods by more than 3%, which demonstrates the effectiveness of the proposed CAT-LSTM. After analyzing patient representation learned by an auto-encoder, we identify 3 novel subphenotypes of AMD patients with different characteristics and progression rates to late AMD, paving the way for improved personalization of AMD management. The code of CAT-LSTM can be found at GitHub .more » « less
-
Abstract Objective Modern healthcare data reflect massive multi-level and multi-scale information collected over many years. The majority of the existing phenotyping algorithms use case–control definitions of disease. This paper aims to study the time to disease onset and progression and identify the time-varying risk factors that drive them. Materials and Methods We developed an algorithmic approach to phenotyping the incidence of diseases by consolidating data sources from the UK Biobank (UKB), including primary care electronic health records (EHRs). We focused on defining events, event dates, and their censoring time, including relevant terms and existing phenotypes, excluding generic, rare, or semantically distant terms, forward-mapping terminology terms, and expert review. We applied our approach to phenotyping diabetes complications, including a composite cardiovascular disease (CVD) outcome, diabetic kidney disease (DKD), and diabetic retinopathy (DR), in the UKB study. Results We identified 49 049 participants with diabetes. Among them, 1023 had type 1 diabetes (T1D), and 40 193 had type 2 diabetes (T2D). A total of 23 833 diabetes subjects had linked primary care records. There were 3237, 3113, and 4922 patients with CVD, DKD, and DR events, respectively. The risk prediction performance for each outcome was assessed, and our results are consistent with the prediction area under the ROC (receiver operating characteristic) curve (AUC) of standard risk prediction models using cohort studies. Discussion and Conclusion Our publicly available pipeline and platform enable streamlined curation of incidence events, identification of time-varying risk factors underlying disease progression, and the definition of a relevant cohort for time-to-event analyses. These important steps need to be considered simultaneously to study disease progression.more » « less
-
Obeid, Iyad Selesnick (Ed.)Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describe our efforts to transform a high-performance offline seizure detection system [3] into a low latency real-time or online seizure detection system. An overview of the system is shown in Figure 1. The main difference between an online versus offline system is that an online system should always be causal and has minimum latency which is often defined by domain experts. The offline system, shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients (LFCC) [6] features from each EEG channel separately. We use the hypotheses generated by the P1 model and create additional features that carry information about the detected events and their confidence. The P2 model uses these additional features and the LFCC features to learn the temporal and spatial aspects of the EEG signals using a hybrid convolutional neural network (CNN) and LSTM model. Finally, Phase 3 aggregates the results from both P1 and P2 before applying a final postprocessing step. The online system implements Phase 1 by taking advantage of the Linux piping mechanism, multithreading techniques, and multi-core processors. To convert Phase 1 into an online system, we divide the system into five major modules: signal preprocessor, feature extractor, event decoder, postprocessor, and visualizer. The system reads 0.1-second frames from each EEG channel and sends them to the feature extractor and the visualizer. The feature extractor generates LFCC features in real time from the streaming EEG signal. Next, the system computes seizure and background probabilities using a channel-based LSTM model and applies a postprocessor to aggregate the detected events across channels. The system then displays the EEG signal and the decisions simultaneously using a visualization module. The online system uses C++, Python, TensorFlow, and PyQtGraph in its implementation. The online system accepts streamed EEG data sampled at 250 Hz as input. The system begins processing the EEG signal by applying a TCP montage [8]. Depending on the type of the montage, the EEG signal can have either 22 or 20 channels. To enable the online operation, we send 0.1-second (25 samples) length frames from each channel of the streamed EEG signal to the feature extractor and the visualizer. Feature extraction is performed sequentially on each channel. The signal preprocessor writes the sample frames into two streams to facilitate these modules. In the first stream, the feature extractor receives the signals using stdin. In parallel, as a second stream, the visualizer shares a user-defined file with the signal preprocessor. This user-defined file holds raw signal information as a buffer for the visualizer. The signal preprocessor writes into the file while the visualizer reads from it. Reading and writing into the same file poses a challenge. The visualizer can start reading while the signal preprocessor is writing into it. To resolve this issue, we utilize a file locking mechanism in the signal preprocessor and visualizer. Each of the processes temporarily locks the file, performs its operation, releases the lock, and tries to obtain the lock after a waiting period. The file locking mechanism ensures that only one process can access the file by prohibiting other processes from reading or writing while one process is modifying the file [9]. The feature extractor uses circular buffers to save 0.3 seconds or 75 samples from each channel for extracting 0.2-second or 50-sample long center-aligned windows. The module generates 8 absolute LFCC features where the zeroth cepstral coefficient is replaced by a temporal domain energy term. For extracting the rest of the features, three pipelines are used. The differential energy feature is calculated in a 0.9-second absolute feature window with a frame size of 0.1 seconds. The difference between the maximum and minimum temporal energy terms is calculated in this range. Then, the first derivative or the delta features are calculated using another 0.9-second window. Finally, the second derivative or delta-delta features are calculated using a 0.3-second window [6]. The differential energy for the delta-delta features is not included. In total, we extract 26 features from the raw sample windows which add 1.1 seconds of delay to the system. We used the Temple University Hospital Seizure Database (TUSZ) v1.2.1 for developing the online system [10]. The statistics for this dataset are shown in Table 1. A channel-based LSTM model was trained using the features derived from the train set using the online feature extractor module. A window-based normalization technique was applied to those features. In the offline model, we scale features by normalizing using the maximum absolute value of a channel [11] before applying a sliding window approach. Since the online system has access to a limited amount of data, we normalize based on the observed window. The model uses the feature vectors with a frame size of 1 second and a window size of 7 seconds. We evaluated the model using the offline P1 postprocessor to determine the efficacy of the delayed features and the window-based normalization technique. As shown by the results of experiments 1 and 4 in Table 2, these changes give us a comparable performance to the offline model. The online event decoder module utilizes this trained model for computing probabilities for the seizure and background classes. These posteriors are then postprocessed to remove spurious detections. The online postprocessor receives and saves 8 seconds of class posteriors in a buffer for further processing. It applies multiple heuristic filters (e.g., probability threshold) to make an overall decision by combining events across the channels. These filters evaluate the average confidence, the duration of a seizure, and the channels where the seizures were observed. The postprocessor delivers the label and confidence to the visualizer. The visualizer starts to display the signal as soon as it gets access to the signal file, as shown in Figure 1 using the “Signal File” and “Visualizer” blocks. Once the visualizer receives the label and confidence for the latest epoch from the postprocessor, it overlays the decision and color codes that epoch. The visualizer uses red for seizure with the label SEIZ and green for the background class with the label BCKG. Once the streaming finishes, the system saves three files: a signal file in which the sample frames are saved in the order they were streamed, a time segmented event (TSE) file with the overall decisions and confidences, and a hypotheses (HYP) file that saves the label and confidence for each epoch. The user can plot the signal and decisions using the signal and HYP files with only the visualizer by enabling appropriate options. For comparing the performance of different stages of development, we used the test set of TUSZ v1.2.1 database. It contains 1015 EEG records of varying duration. The any-overlap performance [12] of the overall system shown in Figure 2 is 40.29% sensitivity with 5.77 FAs per 24 hours. For comparison, the previous state-of-the-art model developed on this database performed at 30.71% sensitivity with 6.77 FAs per 24 hours [3]. The individual performances of the deep learning phases are as follows: Phase 1’s (P1) performance is 39.46% sensitivity and 11.62 FAs per 24 hours, and Phase 2 detects seizures with 41.16% sensitivity and 11.69 FAs per 24 hours. We trained an LSTM model with the delayed features and the window-based normalization technique for developing the online system. Using the offline decoder and postprocessor, the model performed at 36.23% sensitivity with 9.52 FAs per 24 hours. The trained model was then evaluated with the online modules. The current performance of the overall online system is 45.80% sensitivity with 28.14 FAs per 24 hours. Table 2 summarizes the performances of these systems. The performance of the online system deviates from the offline P1 model because the online postprocessor fails to combine the events as the seizure probability fluctuates during an event. The modules in the online system add a total of 11.1 seconds of delay for processing each second of the data, as shown in Figure 3. In practice, we also count the time for loading the model and starting the visualizer block. When we consider these facts, the system consumes 15 seconds to display the first hypothesis. The system detects seizure onsets with an average latency of 15 seconds. Implementing an automatic seizure detection model in real time is not trivial. We used a variety of techniques such as the file locking mechanism, multithreading, circular buffers, real-time event decoding, and signal-decision plotting to realize the system. A video demonstrating the system is available at: https://www.isip.piconepress.com/projects/nsf_pfi_tt/resources/videos/realtime_eeg_analysis/v2.5.1/video_2.5.1.mp4. The final conference submission will include a more detailed analysis of the online performance of each module. ACKNOWLEDGMENTS Research reported in this publication was most recently supported by the National Science Foundation Partnership for Innovation award number IIP-1827565 and the Pennsylvania Commonwealth Universal Research Enhancement Program (PA CURE). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the official views of any of these organizations. REFERENCES [1] A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for electroencephalogram (EEG) classification tasks: a review,” J. Neural Eng., vol. 16, no. 3, p. 031001, 2019. https://doi.org/10.1088/1741-2552/ab0ab5. [2] A. C. Bridi, T. Q. Louro, and R. C. L. Da Silva, “Clinical Alarms in intensive care: implications of alarm fatigue for the safety of patients,” Rev. Lat. Am. Enfermagem, vol. 22, no. 6, p. 1034, 2014. https://doi.org/10.1590/0104-1169.3488.2513. [3] M. Golmohammadi, V. Shah, I. Obeid, and J. Picone, “Deep Learning Approaches for Automatic Seizure Detection from Scalp Electroencephalograms,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York, New York, USA: Springer, 2020, pp. 233–274. https://doi.org/10.1007/978-3-030-36844-9_8. [4] “CFM Olympic Brainz Monitor.” [Online]. Available: https://newborncare.natus.com/products-services/newborn-care-products/newborn-brain-injury/cfm-olympic-brainz-monitor. [Accessed: 17-Jul-2020]. [5] M. L. Scheuer, S. B. Wilson, A. Antony, G. Ghearing, A. Urban, and A. I. Bagic, “Seizure Detection: Interreader Agreement and Detection Algorithm Assessments Using a Large Dataset,” J. Clin. Neurophysiol., 2020. https://doi.org/10.1097/WNP.0000000000000709. [6] A. Harati, M. Golmohammadi, S. Lopez, I. Obeid, and J. Picone, “Improved EEG Event Classification Using Differential Energy,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium, 2015, pp. 1–4. https://doi.org/10.1109/SPMB.2015.7405421. [7] V. Shah, C. Campbell, I. Obeid, and J. Picone, “Improved Spatio-Temporal Modeling in Automated Seizure Detection using Channel-Dependent Posteriors,” Neurocomputing, 2021. [8] W. Tatum, A. Husain, S. Benbadis, and P. Kaplan, Handbook of EEG Interpretation. New York City, New York, USA: Demos Medical Publishing, 2007. [9] D. P. Bovet and C. Marco, Understanding the Linux Kernel, 3rd ed. O’Reilly Media, Inc., 2005. https://www.oreilly.com/library/view/understanding-the-linux/0596005652/. [10] V. Shah et al., “The Temple University Hospital Seizure Detection Corpus,” Front. Neuroinform., vol. 12, pp. 1–6, 2018. https://doi.org/10.3389/fninf.2018.00083. [11] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011. https://dl.acm.org/doi/10.5555/1953048.2078195. [12] J. Gotman, D. Flanagan, J. Zhang, and B. Rosenblatt, “Automatic seizure detection in the newborn: Methods and initial evaluation,” Electroencephalogr. Clin. Neurophysiol., vol. 103, no. 3, pp. 356–362, 1997. https://doi.org/10.1016/S0013-4694(97)00003-9.more » « less