Deep neural network models, especially Long Short Term Memory (LSTM), have shown great success in analyzing Electronic Health Records (EHRs) due to their ability to capture temporal dependencies in time series data. When applying the deep learning models to EHRs, we are generally confronted with two major challenges: high rate of missingness and time irregularity. Motivated by the original PACIFIER framework which utilized matrix decomposition for data imputation, we applied and further extended it by including three components: forecasting future events, a time-aware mechanism, and a subgroup basis approach. We evaluated the proposed framework with real-world EHRs which consists of 52,919 visits and 4,224,567 events on a task of early prediction of septic shock. We compared our work against multiple baselines including the original PACIFIER using both LSTM and Time-aware LSTM (T-LSTM). Experimental results showed that our proposed framework significantly outperformed all competitive baseline approaches. More importantly, the extracted interpretative latent patterns from subgroups could shed some lights for clinicians to discover the progression of septic shock patients.
more »
« less
ATTAIN: Attention-based Time-Aware LSTM Networks for Disease Progression Modeling.
Modeling patient disease progression using Electronic Health Records (EHRs) is critical to assist clinical decision making. Long-Short Term Memory (LSTM) is an effective model to handle sequential data, such as EHRs, but it encounters two major limitations when applied to EHRs: it is unable to interpret the prediction results and it ignores the irregular time intervals between consecutive events. To tackle these limitations, we propose an attention-based time-aware LSTM Networks (ATTAIN), to improve the interpretability of LSTM and to identify the critical previous events for current diagnosis by modeling the inherent time irregularity. We validate ATTAIN on modeling the progression of an extremely challenging disease, septic shock, by using real-world EHRs. Our results demonstrate that the proposed framework outperforms the state-of-the-art models such as RETAIN and T-LSTM. Also, the generated interpretative time-aware attention weights shed some lights on the progression behaviors of septic shock.
more »
« less
- Award ID(s):
- 1651909
- PAR ID:
- 10136491
- Date Published:
- Journal Name:
- In Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI-2019), pp. 4369-4375, Macao, China.
- Page Range / eLocation ID:
- 4369-4375
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Electronic healthcare records (EHRs) are comprehensive longitudinal collections of patient data that play a critical role in modeling the disease progression to facilitate clinical decision-making. Based on EHRs, in this work, we focus on sepsis – a broad syndrome that can develop from nearly all types of infections (e.g., influenza, pneumonia). The symptoms of sepsis, such as elevated heart rate, fever, and shortness of breath, are vague and common to other illnesses, making the modeling of its progression extremely challenging. Motivated by the recent success of a novel subsequence clustering approach: Toeplitz Inverse Covariance-based Clustering (TICC), we model the sepsis progression as a subsequence partitioning problem and propose a Multi-series Time-aware TICC (MT-TICC), which incorporates multi-series nature and irregular time intervals of EHRs. The effectiveness of MT-TICC is first validated via a case study using a real-world hand gesture dataset with ground-truth labels. Then we further apply it for sepsis progression modeling using EHRs. The results suggest that MT-TICC can significantly outperform competitive baseline models, including the TICC. More importantly, it unveils interpretable patterns, which sheds some light on better understanding the sepsis progression.more » « less
-
Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in developed countries. Identifying patients at high risk of progression to late AMD, the sight-threatening stage, is critical for clinical actions, including medical interventions and timely monitoring. Recently, deep-learning-based models have been developed and achieved superior performance for late AMD pre- diction. However, most existing methods are limited to the color fundus photography (CFP) from the last ophthalmic visit and do not include the longitudinal CFP history and AMD progression during the previous years’ visits. Patients in different AMD subphenotypes might have various speeds of progression in different stages of AMD disease. Capturing the progression information during the previous years’ visits might be useful for the prediction of AMD pro- gression. In this work, we propose a Contrastive-Attention-based Time-aware Long Short-Term Memory network (CAT-LSTM) to predict AMD progression. First, we adopt a convolutional neural network (CNN) model with a contrastive attention module (CA) to extract abnormal features from CFPs. Then we utilize a time-aware LSTM (T-LSTM) to model the patients’ history and consider the AMD progression information. The combination of disease pro- gression, genotype information, demographics, and CFP features are sent to T-LSTM. Moreover, we leverage an auto-encoder to represent temporal CFP sequences as fixed-size vectors and adopt k-means to cluster them into subphenotypes. We evaluate the pro- posed model based on real-world datasets, and the results show that the proposed model could achieve 0.925 on area under the receiver operating characteristic (AUROC) for 5-year late-AMD prediction and outperforms the state-of-the-art methods by more than 3%, which demonstrates the effectiveness of the proposed CAT-LSTM. After analyzing patient representation learned by an auto-encoder, we identify 3 novel subphenotypes of AMD patients with different characteristics and progression rates to late AMD, paving the way for improved personalization of AMD management. The code of CAT-LSTM can be found at GitHub .more » « less
-
Abstract Objective Modern healthcare data reflect massive multi-level and multi-scale information collected over many years. The majority of the existing phenotyping algorithms use case–control definitions of disease. This paper aims to study the time to disease onset and progression and identify the time-varying risk factors that drive them. Materials and Methods We developed an algorithmic approach to phenotyping the incidence of diseases by consolidating data sources from the UK Biobank (UKB), including primary care electronic health records (EHRs). We focused on defining events, event dates, and their censoring time, including relevant terms and existing phenotypes, excluding generic, rare, or semantically distant terms, forward-mapping terminology terms, and expert review. We applied our approach to phenotyping diabetes complications, including a composite cardiovascular disease (CVD) outcome, diabetic kidney disease (DKD), and diabetic retinopathy (DR), in the UKB study. Results We identified 49 049 participants with diabetes. Among them, 1023 had type 1 diabetes (T1D), and 40 193 had type 2 diabetes (T2D). A total of 23 833 diabetes subjects had linked primary care records. There were 3237, 3113, and 4922 patients with CVD, DKD, and DR events, respectively. The risk prediction performance for each outcome was assessed, and our results are consistent with the prediction area under the ROC (receiver operating characteristic) curve (AUC) of standard risk prediction models using cohort studies. Discussion and Conclusion Our publicly available pipeline and platform enable streamlined curation of incidence events, identification of time-varying risk factors underlying disease progression, and the definition of a relevant cohort for time-to-event analyses. These important steps need to be considered simultaneously to study disease progression.more » « less
-
null (Ed.)COVID-19 pandemic has an unprecedented impact all over the world since early 2020. During this public health crisis, reliable forecasting of the disease becomes critical for resource allocation and administrative planning. The results from compartmental models such as SIR and SEIR are popularly referred by CDC and news media. With more and more COVID-19 data becoming available, we examine the following question: Can a direct data-driven approach without modeling the disease spreading dynamics outperform the well referred compartmental models and their variants? In this paper, we show the possibility. It is observed that as COVID-19 spreads at different speed and scale in different geographic regions, it is highly likely that similar progression patterns are shared among these regions within different time periods. This intuition lead us to develop a new neural forecasting model, called Attention Crossing Time Series (ACTS), that makes forecasts via comparing patterns across time series obtained from multiple regions. The attention mechanism originally developed for natural language processing can be leveraged and generalized to materialize this idea. Among 13 out of 18 testings including forecasting newly conrmed cases, hospitalizations and deaths, ACTS outperforms all the leading COVID-19 forecasters highlighted by CDC.more » « less