skip to main content


Title: Selective production of 5-hydroxymethylfurfural from fructose in the presence of an acid-functionalized SBA-15 catalyst modified with a sulfoxide polymer
Biomass is a renewable carbon feedstock that can be converted to 5-hydroxymethylfurfural (HMF), a useful platform chemical that can be modified to produce valuable chemicals and fuels. Previous research has shown that high HMF selectivity can be achieved in organic solvents such as dimethyl sulfoxide (DMSO) because of its capability to stabilize HMF in solution, but DMSO is an undesirable solvent to use industrially as product separation from the reaction solution is difficult. Surface functionalization of porous catalysts has been shown as a method to introduce solvent-effects at the surface of heterogeneous catalysts, thus avoiding the need for high boiling solvents like DMSO. Poly(ethylene sulfoxide) (PESO) is added to the surface of sulfonic acid (SA) functionalized SBA-15 silica to obtain the bifunctional catalyst SA-PESO-SBA-15. Co-localization of the sulfoxide polymer with sulfonic acid groups inside the catalyst pores (SA-PESO-SBA-15) increased HMF selectivity to 51% from 26% obtained by monofunctional SA-SBA-15 at 27% fructose conversion in water. Additionally, this bifunctional catalyst performs best in 4 : 1 (w/w) THF : water cosolvent, a more industrially preferred cosolvent system, obtaining 79% HMF selectivity at 87% fructose conversion. Overall, these materials are promising for the selective conversion of fructose to HMF.  more » « less
Award ID(s):
1653587 1605037
NSF-PAR ID:
10136925
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Molecular Systems Design & Engineering
Volume:
5
Issue:
1
ISSN:
2058-9689
Page Range / eLocation ID:
257 to 268
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Among many biomass‐derived intermediate compounds, 5‐hydroxymethylfurfural (HMF) has been regarded as a platform chemical because it can be used to produce numerous valuable products. However, the difficulty of HMF isolation from reaction media coupled with its poor stability have significantly inhibited its large‐scale production and application. In this work, we report a single‐step process for the direct production of HMF from glucose using green chemical methods. Optimized glucose isomerization and dehydration under microwave irradiation achieved a respectable HMF yield (70 %) using a biphasic solvent mixture (water/THF), high glucose concentration (30 % w/v), catalytic amounts of AlCl3(5 mol%) and HCl (15 mol%). The reaction can be completed within minutes at 165 °C. Overall, our microwave‐assisted strategy enables the direct conversion of commercially available glucose to the highly valuable platform chemical HMF without the use of expensive solvents or catalysts, suggesting an economically attractive approach for upgrading carbohydrates.

     
    more » « less
  2. null (Ed.)
    Palladium catalyzed cross-coupling reactions represent a significant advancement in contemporary organic synthesis as these reactions are of strategic importance in the area of pharmaceutical drug discovery and development. Supported palladium-based catalysts are highly sought-after in carbon–carbon bond forming catalytic processes to ensure catalyst recovery and reuse while preventing product contamination. This paper reports the development of heterogeneous Pd-based bimetallic catalysts supported on fumed silica that have high activity and selectivity matching those of homogeneous catalysts, eliminating the catalyst's leaching and sintering and allowing efficient recycling of the catalysts. Palladium and base metal (Cu, Ni or Co) contents of less than 1.0 wt% loading are deposited on a mesoporous fumed silica support (surface area SA BET = 350 m 2 g −1 ) using strong electrostatic adsorption (SEA) yielding homogeneously alloyed nanoparticles with an average size of 1.3 nm. All bimetallic catalysts were found to be highly active toward Suzuki cross-coupling (SCC) reactions with superior activity and stability for the CuPd/SiO 2 catalyst. A low CuPd/SiO 2 loading (Pd: 0.3 mol%) completes the conversion of bromobenzene and phenylboronic acid to biphenyl in 30 minutes under ambient conditions in water/ethanol solvent. In contrast, monometallic Pd/SiO 2 (Pd: 0.3 mol%) completes the same reaction in three hours under the same conditions. The combination of Pd with the base metals helps in retaining the Pd 0 status by charge donation from the base metals to Pd, thus lowering the activation energy of the aryl halide oxidative addition step. Along with its exceptional activity, CuPd/SiO 2 exhibits excellent recycling performance with a turnover frequency (TOF) of 280 000 h −1 under microwave reaction conditions at 60 °C. Our study demonstrates that SEA is an excellent synthetic strategy for depositing ultra-small Pd-based bimetallic nanoparticles on porous silica for SCC. This avenue not only provides highly active and sintering-resistant catalysts but also significantly lowers Pd contents in the catalysts without compromising catalytic activity, making the catalysts very practical for large-scale applications. 
    more » « less
  3. Rational catalyst design and optimal solvent selection are key to advancing biorefining. Here, we explored the organocatalytic isomerization of d-fructose to a valuable rare monosaccharide, d-allulose, as a function of solvent. The isomerization of d-fructose to d-allulose competes with its isomerization to d-glucose and sugar degradation. In both water and DMF, the catalytic activity of amines towards d-fructose is correlated with their basicity. Solvents impact the selectivity significantly by altering the tautomeric distribution of d-fructose. Our results suggest that the furanose tautomer of d-fructose is isomerized to d-allulose, and the fractional abundance of this tautomer increases as follows: water < MeOH < DMF ≈ DMSO. Reaction rates are also higher in aprotic than in protic solvents. The best d-allulose yield, 14 %, was obtained in DMF with 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as the catalyst. The reaction kinetics and mechanism were explored using operando NMR spectroscopy. 
    more » « less
  4. Catalytically active asymmetric membranes were developed by crosslinking a polydimethylsiloxane (PDMS) thin layer onto a porous polyamide‐imide hollow fiber (PAIHF) support, followed by grafting of aminosilane with hydroxyl derived-PDMS/PAIHF, and finally palladium nanoparticles (PdNPs) immobilization using salicylic aldehyde. Aminosilane and salicylic aldehyde linkers were used to permanently immobilize PdNPs onto the PDMS surface through metal coordination chelation, which prevented their agglomeration and leaching from the catalytic membrane reactor (CMR) module. The obtained CMRs were used as a heterogeneous catalyst and continuous-flow membrane reactor for hydrogenation of 4-nitrophenol, aldol and nitroaldol condensation, Heck coupling, CO2 cycloaddition and hydroxyalkylation of aniline, and tandem reactions of glucose and fructose to 5-hydroxymethylfurfural (HMF). Our findings also revealed that the turnover frequency (TOF) and selectivity can be tuned and controlled by adjusting the chemistry and degree of cross-linkers, reaction solvents, and flow rates. Even though our polymeric hollow fiber microreactors showed relatively good performance at temperatures up to 150 °C, some amount of active spices (e.g., Pd nanoparticles) leached out from the microreactor due to polymer swelling, plasticization, and pore shrinkage during flow reaction, especially when exposed to polar aprotic solvents and aromatics, and deteriorated the stability of the immobilized catalysts. 
    more » « less
  5. Abstract

    Fructose is a versatile precursor for food and chemicals. Currently, catalytic production of fructose is achieved by enzymatic isomerization of glucose from renewable lignocellulose. Although the catalyst, glucose isomerase, is selective, it is not stable. Here, aluminum‐containing metal‐organic frameworks (Al‐MOFs) are shown to be active, selective, stable, and reusable for glucose isomerization in ethanol. Al‐MOFs achieved 64% fructose selectivity with 82% glucose conversion at 120 °C, superior performance compared with most other solid catalysts. The amino groups in Al‐MOFs enhance Lewis acid strength, which is responsible for the high fructose selectivity at high glucose conversion. Moreover, the Al‐MOF catalyst is stable and reusable at least four times without losing either activity or fructose selectivity. These findings illustrate compelling opportunities for Al‐MOFs in fructose production and other organic reactions, such as fructose conversion to 5‐hydroxymethylfurfural and levulinic acid.

     
    more » « less