This paper demonstrates a novel, compact-sized hardware-in-the-loop system, and its verification using machine learning and artificial intelligence features in battery controls. Conventionally, a battery management system involves algorithm development for battery modeling, estimation, and control. These tasks are typically validated by running the battery tester open-loop, i.e., the tester equipment executes the pre-defined experimental protocols line by line. Additional equipment is required to make the testing closed-loop, but the integration is typically not straightforward. To improve flexibility and accessibility for battery management, this work proposes a low-cost highly reliable closed-loop charger and discharger. We first focus on the electronic circuit design for battery testing systems to maximize the applied current accuracy and precision. After functional verification, we further investigate applications for closed-loop battery management systems. In particular, we extend the proposed architecture into the learning-based control design, which is a feedback controller. We utilize reinforcement learning techniques to highlight the benefits of closed-loop controls. As an example, we compare this learning-based control strategy with a conventional battery charging control. The experimental results demonstrate that the proposed experimental design is able to handle the learning-based controller and achieve a more reliable and safer charging protocol driven by artificial intelligence. 
                        more » 
                        « less   
                    
                            
                            A Comparative Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random Forests
                        
                    
    
            Manufacturers have faced an increasing need for the development of predictive models that predict mechanical failures and the remaining useful life (RUL) of manufacturing systems or components. Classical model-based or physics-based prognostics often require an in-depth physical understanding of the system of interest to develop closed-form mathematical models. However, prior knowledge of system behavior is not always available, especially for complex manufacturing systems and processes. To complement model-based prognostics, data-driven methods have been increasingly applied to machinery prognostics and maintenance management, transforming legacy manufacturing systems into smart manufacturing systems with artificial intelligence. While previous research has demonstrated the effectiveness of data-driven methods, most of these prognostic methods are based on classical machine learning techniques, such as artificial neural networks (ANNs) and support vector regression (SVR). With the rapid advancement in artificial intelligence, various machine learning algorithms have been developed and widely applied in many engineering fields. The objective of this research is to introduce a random forests (RFs)-based prognostic method for tool wear prediction as well as compare the performance of RFs with feed-forward back propagation (FFBP) ANNs and SVR. Specifically, the performance of FFBP ANNs, SVR, and RFs are compared using an experimental data collected from 315 milling tests. Experimental results have shown that RFs can generate more accurate predictions than FFBP ANNs with a single hidden layer and SVR. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1650527
- PAR ID:
- 10137110
- Date Published:
- Journal Name:
- Journal of Manufacturing Science and Engineering
- Volume:
- 139
- Issue:
- 7
- ISSN:
- 1087-1357
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            This work presents an integrated architecture for a prognostic digital twin for smart manufacturing subsystems. The specific case of cutting tool wear (flank wear) in a CNC machine is considered, using benchmark data sets provided by the Prognostics and Health Management (PHM) Society. This paper emphasizes the role of robust uncertainty quantification, especially in the presence of data-driven black- and gray-box dynamic models. A surrogate dynamic model is constructed to track the evolution of flank wear using a reduced set of features extracted from multi-modal sensor time series data. The digital twin's uncertainty quantification engine integrates with this dynamic model along with a machine emulator that is tasked with generating future operating scenarios for the machine. The surrogate dynamic model and emulator are combined in a closed-loop architecture with an adaptive Monte Carlo uncertainty forecasting framework that allows prediction of quantities of interest critical to prognostics within user-prescribed bounds. Numerical results using the PHM dataset are shown illustrating how the adaptive uncertainty forecasting tools deliver a trustworthy forecast by maintaining predictive error within the prescribed tolerance.more » « less
- 
            Guillot, Gilles (Ed.)Diagnostic and prognostic models are increasingly important in medicine and inform many clinical decisions. Recently, machine learning approaches have shown improvement over conventional modeling techniques by better capturing complex interactions between patient covariates in a data-driven manner. However, the use of machine learning introduces technical and practical challenges that have thus far restricted widespread adoption of such techniques in clinical settings. To address these challenges and empower healthcare professionals, we present an open-source machine learning framework, AutoPrognosis 2.0, to facilitate the development of diagnostic and prognostic models. AutoPrognosis leverages state-of-the-art advances in automated machine learning to develop optimized machine learning pipelines, incorporates model explainability tools, and enables deployment of clinical demonstrators,withoutrequiring significant technical expertise. To demonstrate AutoPrognosis 2.0, we provide an illustrative application where we construct a prognostic risk score for diabetes using the UK Biobank, a prospective study of 502,467 individuals. The models produced by our automated framework achieve greater discrimination for diabetes than expert clinical risk scores. We have implemented our risk score as a web-based decision support tool, which can be publicly accessed by patients and clinicians. By open-sourcing our framework as a tool for the community, we aim to provide clinicians and other medical practitioners with an accessible resource to develop new risk scores, personalized diagnostics, and prognostics using machine learning techniques. Software:https://github.com/vanderschaarlab/AutoPrognosismore » « less
- 
            null (Ed.)Abstract Machine learning and artificial intelligence (ML/AI) methods have been used successfully in recent years to solve problems in many areas, including image recognition, unsupervised and supervised classification, game-playing, system identification and prediction, and autonomous vehicle control. Data-driven machine learning methods have also been applied to fusion energy research for over 2 decades, including significant advances in the areas of disruption prediction, surrogate model generation, and experimental planning. The advent of powerful and dedicated computers specialized for large-scale parallel computation, as well as advances in statistical inference algorithms, have greatly enhanced the capabilities of these computational approaches to extract scientific knowledge and bridge gaps between theoretical models and practical implementations. Large-scale commercial success of various ML/AI applications in recent years, including robotics, industrial processes, online image recognition, financial system prediction, and autonomous vehicles, have further demonstrated the potential for data-driven methods to produce dramatic transformations in many fields. These advances, along with the urgency of need to bridge key gaps in knowledge for design and operation of reactors such as ITER, have driven planned expansion of efforts in ML/AI within the US government and around the world. The Department of Energy (DOE) Office of Science programs in Fusion Energy Sciences (FES) and Advanced Scientific Computing Research (ASCR) have organized several activities to identify best strategies and approaches for applying ML/AI methods to fusion energy research. This paper describes the results of a joint FES/ASCR DOE-sponsored Research Needs Workshop on Advancing Fusion with Machine Learning, held April 30–May 2, 2019, in Gaithersburg, MD (full report available at https://science.osti.gov/-/media/fes/pdf/workshop-reports/FES_ASCR_Machine_Learning_Report.pdf ). The workshop drew on broad representation from both FES and ASCR scientific communities, and identified seven Priority Research Opportunities (PRO’s) with high potential for advancing fusion energy. In addition to the PRO topics themselves, the workshop identified research guidelines to maximize the effectiveness of ML/AI methods in fusion energy science, which include focusing on uncertainty quantification, methods for quantifying regions of validity of models and algorithms, and applying highly integrated teams of ML/AI mathematicians, computer scientists, and fusion energy scientists with domain expertise in the relevant areas.more » « less
- 
            Since the surge of data in materials-science research and the advancement in machine learning methods, an increasing number of researchers are introducing machine learning techniques into the next generation of materials discovery, ranging from neural-network learned potentials to automated characterization techniques for experimental images. In this snapshot review, we first summarize the landscape of techniques for soft materials assembly design that do not employ machine learning or artificial intelligence and then discuss specific machine learning and artificial-intelligence-based methods that enhance the design pipeline, such as high-throughput crystal-structure characterization and the inverse design of building blocks for materials assembly and properties. Additionally, we survey the landscape of current developments of scientific software, especially in the context of their compatibility with traditional molecular-dynamics engines such as LAMMPS and HOOMD-blue.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    