skip to main content


Title: Nixonite, Na2Ti6O13, a new mineral from a metasomatized mantle garnet pyroxenite from the western Rae Craton, Darby kimberlite field, Canada
Abstract Nixonite (IMA 2018-133), ideally Na2Ti6O13, is a new mineral found within a heavily metasomatized pyroxenite xenolith from the Darby kimberlite field, beneath the west-central Rae Craton, Canada. It occurs as microcrystalline aggregates, 15 to 40 μm in length. Nixonite is isostructural with jeppeite, K2Ti6O13, with a structure consisting of edge- and corner-shared titanium-centered octahedra that enclose alkali-metal ions. The Mohs hardness is estimated to be between 5 and 6 by comparison to jeppeite, and the calculated density is 3.51(1) g/cm3. Electron microprobe wavelength-dispersive spectroscopic analysis (average of 6 points) yielded: Na2O 6.87, K2O 5.67, CaO 0.57, TiO2 84.99, V2O3 0.31, Cr2O3 0.04, MnO 0.01, Fe2O3 0.26, SrO 0.07, total 98.79 wt%. The empirical formula, based on 13 O atoms, is: (Na1.24K0.67Ca0.06)Σ1.97(Ti5.96V0.023Fe0.018)Σ6.00O13 with minor amounts of Cr and Mn. Nixonite is monoclinic, space group C2/m, with unit-cell parameters a = 15.3632(26) Å, b = 3.7782(7) Å, c = 9.1266(15) Å, β = 99.35(15)°, and V = 522.72(1) Å3, Z = 2. Based on the average of seven integrated multi-grain diffraction images, the strongest diffraction lines are [dobs in Å (I in %) (hkl)]: 3.02 (100) (310), 3.66 (75) (110), 7.57 (73) (200), 6.31 (68) (201), 2.96 (63) (311), 2.96 (63) (203), and 2.71 (62) (402). The five main Raman peaks of nixonite, in order of decreasing intensity, are at 863, 280, 664, 135, and 113 cm–1. Nixonite is named after Peter H. Nixon, a renowned scientist in the field of kimberlites and mantle xenoliths. Nixonite occurs within a pyroxenite xenolith in a kimberlite, in association with rutile, priderite, perovskite, freudenbergite, and ilmenite. This complex Na-K-Ti-rich metasomatic mineral assemblage may have been produced by a fractionated Na-rich kimberlitic melt that infiltrated a mantle-derived garnet pyroxenite and reacted with rutile during kimberlite crystallization.  more » « less
Award ID(s):
1853521
NSF-PAR ID:
10137251
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
American Mineralogist
Volume:
104
Issue:
9
ISSN:
0003-004X
Page Range / eLocation ID:
1336 to 1344
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Coupled U‐Pb and trace‐element analyses of accessory phases in crustal xenoliths from the Late Devonian Udachnaya kimberlite (Siberian craton, Russia) are used to constrain Moho temperature and crustal heat production at the time of kimberlite eruption. Rutile and apatite in lower‐crustal garnet granulites record U‐Pb dates that extend from 1.8 Ga to 360 Ma (timing of kimberlite eruption). This contrasts with upper‐crustal tonalites and amphibolites that contain solely Paleoproterozoic apatite. Depth profiling of rutile from the lower‐crustal xenoliths show that U‐Pb dates increase gradually from rim to core over μm‐scale distances, with slower‐diffusing elements (e.g., Al) increasing in concentration across similar length‐scales. The U‐Pb and trace element gradients in rutile are incompatible with partial Pb loss during slow cooling, but are consistent with neocrystallization and re‐heating of the lower crust for <1 Myr prior to eruption. Because Paleoproterozoic rutile and apatite dates are preserved, we infer that long‐term ambient lower‐crustal temperatures before this thermal perturbation were cooler than the Pb closure temperature of rutile and probably apatite (<400°C). The lower‐crustal temperature bounds from these data are consistent with pressure‐temperature arrays of Udachnaya peridotite xenoliths that suggest relatively cool geothermal gradients, signifying that the mantle xenoliths accurately capture the thermal state of the lithosphere prior to eruption. Combined, the xenolith data imply low crustal heat production for the Siberian craton (∼0.3 μW/m3). Nevertheless, such values produce surface heat flow values of 20–40 mW/m2, higher than measured around Udachnaya (average 19 mW/m2), suggesting that the surface heat flow measurements are inaccurate.

     
    more » « less
  2. Abstract

    Beckettite (Ca2V6Al6O20; IMA 2015‐001) is a newly discovered refractory mineral, occurring as micrometer‐sized grains intergrown with hibonite and perovskite, and surrounded by secondary grossular, anorthite, coulsonite, hercynite, and corundum. It occurs within highly altered areas in a V‐rich, Type A Ca‐Al‐rich inclusion (CAI), A‐WP1, from the Allende CV3 carbonaceous chondrite. The type beckettite has an empirical formula of (Ca1.99Na0.01)(V3+3.47Al1.40Ti4+0.57Mg0.25Sc0.08Fe2+0.04)(Al5.72Si0.28)O20, with a triclinic structure in space groupPand cell parametersa= 10.367 Å,b= 10.756 Å,c= 8.895 Å, α = 106.0°, β = 96.0°, γ = 124.7°,V= 739.7 Å3, andZ= 2, which leads to a calculated density of 3.67 g cm−3. Beckettite’s general formula is Ca2(V,Al,Ti,Mg)6Al6O20and the endmember formula is Ca2V6Al6O20. Beckettite is slightly16O‐depleted (Δ17O = −16 ± 2‰) compared to the coexisting hibonite and spinel −24 ± 2‰. Beckettite is a primary high‐temperature mineral resulting from igneous crystallization of an16O‐rich V‐rich CAI melt together with V‐bearing hibonite, perovskite, burnettite, spinel, and paqueite. Subsequently, beckettite experienced an incomplete isotope exchange with an16O‐poor aqueous fluid (Δ17O = −3 ± 2‰) on the Allende parent asteroid.

     
    more » « less
  3. Abstract

    Amphibole is a common hydrous mineral in mantle rocks. To better understand processes leading to the formation of amphibole‐bearing peridotites and pyroxenites in the lithospheric mantle, we conducted experiments by juxtaposing a lherzolite against hydrous basaltic melts in Au‐Pd capsules. Two melts were examined, a basaltic andesite and a basalt, each containing 4 wt% of water. The experiments were run at 1200°C and 1 GPa for 3 or 12 h, and then cooled to 880°C and 0.8 GPa over 49 h. The reaction at 1200°C produced a melt‐bearing orthopyroxenite‐dunite sequence. Crystallization of the partially reacted melts during cooling lead to the formation of an amphibole‐bearing gabbronorite‐orthopyroxenite‐peridotite sequence. Orthopyroxene in the peridotite and orthopyroxenite has a poikilitic texture enclosing olivines and spinels. Amphibole in the peridotite occurs interstitial to olivine, orthopyroxene, clinopyroxene, and spinel. Comparisons of texture and mineral compositions in the experimental products with those from field observations allow a better understanding of hydrous melt‐rock reaction in the lithospheric mantle. Amphibole‐bearing pyroxenite veins (or dikes) can be formed in the lithospheric mantle or at the crust‐mantle boundary by interaction between hydrous melt and peridotite and subsequent crystallization. Hornblendite or amphibole gabbronorite can be formed in the veins when the flux of hydrous melt is high. Differences in reacting melt and peridotite compositions are responsible for the variation in amphibole composition in mantle xenoliths from different tectonic settings. The extent of melt‐rock reaction is a factor that control amphibole composition across the amphibole‐bearing vein and the host peridotite.

     
    more » « less
  4. Hydrogen is a rapidly diffusing monovalent cation in nominally anhydrous minerals (NAMs, such as olivine, orthopyroxene, and clinopyroxene), which is potentially re-equilibrated during silicate melt-rock and aqueous fluid-rock interactions in massif and abyssal peridotites. We apply a 3D numerical diffusion modeling technique to provide first-order timescales of complete hydrogen re-equilibration in olivine, clinopyroxene, and orthopyroxene over the temperature range 600-1200°C. Model crystals are 1-3 mm along the c-axis and utilize H+ diffusion coefficients appropriate for Fe-bearing systems. Two sets of models were run with different boundary compositions: 1) “low-H models” are constrained by mineral-melt equilibrium partitioning with a basaltic melt that has 0.75 wt% H2O and 2) “high-H models,” which utilize the upper end of the estimated range of mantle water solubility for each phase. Both sets of models yield re-equilibration timescales that are identical and are fast for all phases at a given temperature. These timescales have strong log-linear trends as a function of temperature (R2 from 0.97 to 0.99) that can be used to calculate expected re-equilibration time at a given temperature and grain size. At the high end of the model temperatures (1000-1200°C), H+ completely re-equilibrates in olivine, orthopyroxene, and clinopyroxene within minutes to hours, consistent with previous studies. These short timescales indicate that xenolith NAM mantle water contents are likely to be overprinted prior to eruption. The models also resolve the decoupled water-trace element relationship in Southwest Indian Ridge peridotites, in which peridotite REE abundances are reproduced by partial melting models whereas the relatively high NAM H2O contents require later re-equilibration with melt. At temperatures of 600-800°C, which correspond to conditions of hydrothermal alteration of pyroxene to amphibole and talc, H+ re-equilibration typically occurs over a range of timescales spanning days to years. These durations are well within existing estimates for the duration of fluid flow in oceanic hydrothermal systems, suggesting that peridotite NAM water contents are susceptible to diffusive overprinting during higher temperature hydrothermal alteration. Thus, diffusion during aqueous fluid-rock interactions may also explain NAM H2O contents that are too high to reflect residues of melting. These relatively short timescales at low temperatures suggest that the origin of water contents measured in peridotite NAMs requires additional constraints on sample petrogenesis, including petrographic and trace element analyses. Our 3D model results also hint that H+ may diffuse appreciably during peridotite serpentinization, but diffusion coefficients at low temperature are unconstrained and additional experimental investigations are needed. 
    more » « less
  5. Abstract Goldschmidtite is a new perovskite-group mineral (IMA No. 2018-034) with the ideal formula (K,REE,Sr)(Nb,Cr)O3. A single grain of goldschmidtite with a maximum dimension of ∼100 μm was found as an inclusion in a diamond from the Koffiefontein pipe in South Africa. In addition to the dark green and opaque goldschmidtite, the diamond contained a Cr-rich augite (websteritic paragenesis) and an intergrowth of chromite, Mg-silicate, and unidentified K-Sr-REE-Nb-oxide. Geothermobarometry of the augite indicates that the depth of formation was ∼170 km. The chemical composition of gold-schmidtite determined by electron microprobe analysis (n = 11, WDS, wt%) is: Nb2O5 44.82, TiO2 0.44, ThO2 0.10, Al2O3 0.35, Cr2O3 7.07, La2O3 11.85, Ce2O3 6.18, Fe2O3 1.96, MgO 0.70, CaO 0.04, SrO 6.67, BaO 6.82, K2O 11.53, total 98.53. The empirical formula (expressed to two decimal places) is (K0.50La0.15Sr0.13Ba0.09Ce0.08)Σ0.95(Nb0.70Cr0.19Fe0.05Al0.01Mg0.04Ti0.01)Σ1.00O3. Goldschmidtite is cubic, space group Pm3m, with unit-cell parameters: a = 3.9876(1) Å, V = 63.404(6) Å3, Z = 1, resulting in a calculated density of 5.32(3) g/cm3. Goldschmidtite is the K-analog of isolueshite, (Na,La)NbO3. Raman spectra of goldschmidtite exhibit many second-order broad bands at 100 to 700 cm–1 as well as a pronounced peak at 815 cm–1, which is possibly a result of local ordering of Nb and Cr at the B site. The name goldschmidtite is in honor of the eminent geochemist Victor Moritz Goldschmidt (1888–1947), who formalized perovskite crystal chemistry and identified KNbO3 as a perovskite-structured compound. 
    more » « less