Abstract Satellite observations reveal short pulses in the second time derivative of the geomagnetic field. We seek to interpret these signals using complex empirical orthogonal functions (CEOFs). This methodology decomposes the signal into traveling waves, permitting estimates for the period, angular wave number, and phase velocity. We recover CEOFs from the CHAOS‐6 model, focusing on three geographic regions with strong secular acceleration. Two regions are confined to the equator, while the third is located under Alaska. We find evidence for both eastward and westward traveling waves with periods between 7 and 20 years. There is also evidence for weaker standing waves with complex spatial patterns. Two of the three regions have waves that are compatible with predictions for waves in a stratified fluid. Our results yield estimates for the structure of fluid stratification at the top of the core.
more »
« less
Complex wave decomposition of geomagnetic secular acceleration in the equatorial region of Earth's core
Recent satellite missions have detected short pulses of magnetic secular acceleration in the equatorial region of Earth’s core (Chulliat et al., 2010; Finlay et al., 2016). The new data provide an opportunity to detect dynamics in the Earth’s core on short timescales. To interpret these signals, we require a technique to separate distinct wave motions. The standard method, called Empirical Orthogonal Function (EOF), applies only to standing waves. An extension to deal with traveling waves (known as complex - EOF) relies on a Hilbert transform of the dataset before applying the EOF methodology (Horel, 1984; Susalito, 1994). This technique allows us to extract the period (T), the angular wave number (m) and the phase velocity (v), based solely on information in the CHAOS-6 model. We focused on two equatorial regions; one centered on Southeast Asia and the other on the Caribbean. The first two complex - EOFs in both regions account for over 90% of the signal. We find two eastward traveling waves in the Southeast Asia region (Tmode1=16.2 years, Tmode2=9.1 years, vmode1 = 3.5 ± 0.7 degrees/year, vmode2 = 7.1± 1.8 degrees/year and mmode1=mmode2=6). In the Caribbean region, the first mode represents a westward traveling wave (Tmode1 =6.7 years, vmode1 = -7.0 ±0.4 degrees/year and mmode1 = 6). The second mode appears to be a standing wave with a complicated spatial pattern. Extending our analysis beyond ±20º latitude causes a gradual loss of coherence, suggesting that the waves are confined to the equator, consistent with predictions for equatorially trapped MAC waves. In fact, both of the eastward waves in Southeast Asia are compatible with a thin layer of strongly stratified fluid in the outer 28 km of the Earth’s core. Confirmation of this result will require forward models to predict the magnetic secular acceleration expected from equatorially trapped MAC waves. As future work, we propose to use these forward models to reconstruct the CHAOS-6 model in the two equatorial windows.
more »
« less
- Award ID(s):
- 1915807
- PAR ID:
- 10137278
- Date Published:
- Journal Name:
- Fall Meeting of American Geophysical Union
- Volume:
- 2019
- Page Range / eLocation ID:
- GP43B-0803
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
SUMMARY Recent geomagnetic observations reveal localized oscillations in the field’s secular acceleration at high latitudes, with periods of about 20 yr. Several types of waves in rotating magnetized fluids have been proposed to explain equatorial oscillations with similar high frequencies. Among these are non-axisymmetric Alfvén waves, magneto-Coriolis waves and, in the presence of fluid stratification, magnetic-Archimedes–Coriolis (MAC) waves. We explore the hypothesis that the observed high latitude patterns are the signature of MAC waves by modelling their generation in Earth’s core. We quantitatively assess several generation mechanisms using output from dynamo simulations in a theoretical framework due to Lighthill. While the spatio-temporal structure of the sources from the dynamo simulations are expected to be realistic, their amplitudes are extrapolated to reflect differences between the simulation’s parameter space and Earth-like conditions. We estimate full wave spectra spanning monthly to centennial frequencies for three plausible excitation sources: thermal fluctuations, Lorentz force and magnetic induction. When focusing on decadal frequencies, the Lorentz force appears to be most effective in generating high-latitude MAC waves with amplitude estimates falling within an order of magnitude of observed oscillations. Overall, this study puts forward MAC waves as a viable explanation, in the presence of fluid stratification at the top of Earth’s core, for observed field variations at high latitudes.more » « less
-
Abstract The present study addresses two basic questions related to banded chorus waves in the Earth’s magnetosphere: 1) are chorus spectral gaps formed near the equatorial source region or during propagation away from the equator? and 2) why are chorus spectral gaps usually located below 0.5fce(fce: electron gyro‐frequency)? By analyzing Van Allen Probes data, we demonstrate that chorus spectral gaps are observed in the source region where chorus waves propagate both in the parallel and anti‐parallel directions to the magnetic field. Chorus spectral gaps below 0.5fceare associated with electron parallel acceleration at energies above the equatorial Landau resonant energies. We explain that initially generated chorus waves quickly isotropize the electron distribution through Landau resonant acceleration, and the isotropization occurs for higher energies at higher latitudes. The isotropized population, after returning to the magnetic equator, leads to a chorus gap typically below 0.5fceby suppressing wave excitation.more » « less
-
Abstract Rapid growth of magnetic‐field observations through SWARM and other satellite missions motivate new approaches to analyze it. Dynamic mode decomposition (DMD) is a method to recover spatially coherent motion with a periodic time dependence. We use this method to simultaneously analyze the geomagnetic radial field and its secular variation from CHAOS‐7 at high latitudes. A total of five modes are permitted by noise levels in the observations. One mode represents a slowly evolving background state, whereas the other four modes describe a pair of waves; each wave is comprised of a complex DMD mode and its complex conjugate. The waves have periods ofT1 = 19.1 andT2 = 58.4 years and quality factors ofQ1 = 11.0 andQ2 = 4.6, respectively. A 60‐year wave is consistent with previous predictions for zonal waves in a stratified fluid. The 20‐year wave is also consistent with previous reports at high latitudes, although its nature is less clear.more » « less
-
Large-eddy simulations (LESs) of low-Reynolds-number flow (Re=50,000) over a NACA0018 airfoil are performed to investigate flow control at the stall angle of attack (15 deg) by low-amplitude surface waves (actuations) of different types (backward/forward traveling and standing waves) on the airfoil’s suction side. It is found that the backward (toward downstream) traveling waves, inspired from aquatic swimmers, are more effective than forward traveling and standing wave actuations. The results of simulations show that a backward traveling wave with a reduced frequency f∗=4 (f∗=fL/U, where f is frequency; L, chord length; and U, free flow velocity), a nondimensional wavelength λ∗=0.2 (λ∗=λ/L, where λ is dimensional wavelength), and a nondimensional amplitude a∗=0.002 (a∗=a/L, where a is dimensional amplitude) can suppress stall. In contrast, the flow over the airfoil with either standing or forward traveling wave actuations separates from the leading edge similar to the baseline. Consequently, the backward traveling wave creates the highest lift-to-drag ratio. For traveling waves at a higher amplitude (a∗=0.008), however, the shear layer becomes unstable from the actuation point and creates periodic coherent structures. Therefore, the lift coefficient decreases compared with the low-amplitude case.more » « less
An official website of the United States government

