skip to main content


Title: Experimental observation of the marginal glass phase in a colloidal glass

The replica theory of glasses predicts that in the infinite dimensional mean field limit, there exist two distinct glassy phases of matter: stable glass and marginal glass. We have developed a technique to experimentally probe these phases of matter using a colloidal glass. We avoid the difficulties inherent in measuring the long time behavior of glasses by instead focusing on the very short time dynamics of the ballistic to caged transition. We track a single tracer particle within a slowly densifying glass and measure the resulting mean squared displacement (MSD). By analyzing the MSD, we find that upon densification, our colloidal system moves through several states of matter. At lowest densities, it is a subdiffusive liquid. Next, it behaves as a stable glass, marked by the appearance of a plateau in the MSD whose magnitude shrinks with increasing density. However, this shrinking plateau does not shrink to zero; instead, at higher densities, the system behaves as a marginal glass, marked by logarithmic growth in the MSD toward that previous plateau value. Finally, at the highest experimental densities, the system returns to the stable glass phase. This provides direct experimental evidence for the existence of a marginal glass in three dimensions.

 
more » « less
PAR ID:
10137724
Author(s) / Creator(s):
;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
11
ISSN:
0027-8424
Page Range / eLocation ID:
p. 5714-5718
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract For over 40 years, measurements of the nucleation rates in a large number of silicate glasses have indicated a breakdown in the Classical Nucleation Theory at temperatures below that of the peak nucleation rate. The data show that instead of steadily decreasing with decreasing temperature, the work of critical cluster formation enters a plateau and even starts to increase. Many explanations have been offered to explain this anomaly, but none have provided a satisfactory answer. We present an experimental approach to demonstrate explicitly for the example of a 5BaO ∙ 8SiO 2 glass that the anomaly is not a real phenomenon, but instead an artifact arising from an insufficient heating time at low temperatures. Heating times much longer than previously used at a temperature 50 K below the peak nucleation rate temperature give results that are consistent with the predictions of the Classical Nucleation Theory. These results raise the question of whether the claimed anomaly is also an artifact in other glasses. 
    more » « less
  2. Abstract

    Features intrinsic to disorder and network aspects are ubiquitous in structural glasses. Among this important class of materials, chalcogenide glasses are special—they are built of short‐range covalent forces, making them simpler than silicate glasses that possess mixed ionic and covalent forces. Selenium‐based glasses also display complex elastic phase transitions that have been described from various models, including mean‐field approaches to molecular simulations. These point to the presence of two sharply defined elastic phase transitions, a rigidity and stress transition that are non‐mean‐field in character, and separate the three distinct topological phases of flexible, isostatically rigid, and stressed‐rigid. This article reviews the physics of these glassy networks. The elastic phases and glass transition temperature are explained on a molecular level in terms of topological constraint theory (TCT), connectivity, and the open degrees of freedom. The broader aspects of TCT in relation to phase change materials, high‐kdielectrics, and cements are also commented upon.

     
    more » « less
  3. Colloidal clay Laponite forms a variety of arrested states that display interesting aging behavior. Microrheology has been applied to Laponite-based glasses and gels, but few studies evaluate the influence of probe particle size. In this work, we report the dynamics and microrheology of Laponite-polymer dispersions during aging using passive microrheology with three different probe particle sizes. At early aging times, the neat Laponite dispersion forms an arrested state; the nature of this state (e.g., a repulsive glass or gel) has remained the subject of debate. The addition of polymer retards gelation and melts the arrested state. While this melting has been observed at the macroscale and has been attributed to a re-entrant transition of a repulsive glass to a liquid state, to our knowledge, it has not been observed at the microscale. The delay of the gelation time needed to form an arrested state was found to depend on the polymer concentration and could vary from ∼24 h for neat Laponite to seven days for some Laponite-polymer samples. Significant effects of probe particle sizes are observed from the mean-squared displacement (MSD) curves as small and intermediate probe particles show diffusive motion, while the motion of large particles is restricted. By examining the factor of ⟨Δ r 2 (τ)⟩ a, structural heterogeneity can be confirmed through the strong size-dependence displayed. Different MSD trends of probe particles are obtained at longer aging times, but no significant changes occur after 30 days of aging. Our microrheology results also reveal significant effects of probe particle size. 
    more » « less
  4. Colloidal suspensions are an ideal model for studying crystallization, nucleation, and glass transition mechanisms, due to the precise control of interparticle interactions by changing the shape, charge, or volume fraction of particles. However, these tuning parameters offer insufficient active control over interparticle interactions and reconfigurability of assembled structures. Dynamic control over the interparticle interactions can be obtained through the application of external magnetic fields that are contactless and chemically inert. In this work, we demonstrate the dual nature of magnetic nanoparticle dispersions to program interactions between suspended nonmagnetic microspheres using an external magnetic field. The nanoparticle dispersion simultaneously behaves as a continuous magnetic medium at the microscale and a discrete medium composed of individual particles at the nanoscale. This enables control over a depletion attractive potential and the introduction of a magnetic repulsive potential, allowing a reversible transition of colloidal structures within a rich phase diagram by applying an external magnetic field. Active control over competing interactions allows us to create a model system encompassing a range of states, from large fractal clusters to low-density Wigner glass states. Monitoring the dynamics of colloidal particles reveals dynamic heterogeneity and a marked slowdown associated with approaching the Wigner glass state. 
    more » « less
  5. Abstract

    Some polymers and oxide glasses exhibit unusual diffusion of liquid or gas, with the depth of diffusion exhibiting a linear increase with time, instead of normal square root of time dependence. There have been many models, but very few experimental data that can help clarify the cause of the phenomenon's existence in glass. Residual stress in sodium trisilicate glass (Na2O–3SiO2) samples was characterized following Case II water diffusion at 80°C in a saturated water vapor environment. The surface‐swelled layer of the glass was removed by dissolving it in water, and birefringence of the newly revealed surface layer was measured. The presence of a constant negative tensile stress gradient was revealed by indicating that Case II diffusion in sodium trisilicate glass originates from this stress gradient, which overwhelms the more typical Fick's law concentration‐dependent flux.

     
    more » « less