skip to main content


Title: Intermethod comparison and evaluation of near surface residual stress in aluminum parts subject to various milling parameters
Near surface residual stress (NSRS) induced by machining (e.g., milling) is known to drive distortion in machined aluminum, particularly in thin complex geometries with tight tolerance requirements where large distortion is undesirable. The understanding and characterization of NSRS in milled aluminum parts is important and should be included in the design and manufacturing process. There exist a variety of experimental tests characterizing these stresses. The objective of this paper is to assess the quality of three experimental methods for evaluating NSRS in prismatic aluminum parts subject to various milling parameters. The three methods are: hole-drilling, slotting, and x-ray diffraction, all of which include incremental material removal. The aluminum parts are cut from stress-relieved plate, AA7050-T7451. A combination of milling table and tool speeds are used to machine a flat surface in the parts. Measurements are made at specified locations and depths on each part. NSRS data from the hole drilling and slotting measurements were comparable; NSRS data from x-ray diffraction differed and was less repeatable. NSRS data for different milling parameters shows that the depth of NSRS increases with feed per tooth but is unaffected by different cutting speeds.  more » « less
Award ID(s):
1663341
NSF-PAR ID:
10137872
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Residual Stress, Thermomechanics & Infrared Imaging and Inverse Problems, Volume 6; Proceedings of the 2019 Annual Conference on Experimental and Applied Mechanics
Volume:
6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background While near surface residual stress (NSRS) from milling is a driver for distortion in aluminum parts there are few studies that directly compare available techniques for NSRS measurement. Objective We report application and assessment of four different techniques for evaluating residual stress versus depth in milled aluminum parts. Methods The four techniques are: hole-drilling, slotting, cos(α) x-ray diffraction (XRD), and sin 2 (ψ) XRD, all including incremental material removal to produce a stress versus depth profile. The milled aluminum parts are cut from stress-relieved plate, AA7050-T7451, with a range of table and tool speeds used to mill a large flat surface in several samples. NSRS measurements are made at specified locations on each sample. Results Resulting data show that NSRS from three techniques are in general agreement: hole-drilling, slotting, and sin 2 (ψ) XRD. At shallow depths (< 0.03 mm), sin 2 (ψ) XRD data have the best repeatability (< 15 MPa), but at larger depths (> 0.04 mm) hole-drilling and slotting have the best repeatability (< 10 MPa). NSRS data from cos(α) XRD differ from data provided by other techniques and the data are less repeatable. NSRS data for different milling parameters show that the depth of NSRS increases with feed per tooth and is unaffected by cutting speed. Conclusion Hole-drilling, slotting, and sin 2 (ψ) XRD provided comparable results when assessing milling-induced near surface residual stress in aluminum. Combining a simple distortion test, comprising removal of a 1 mm thick wafer at the milled surface, with a companion stress analysis showed that NSRS data from hole-drilling are most consistent with milling-induced distortion. 
    more » « less
  2. Abstract Background

    Distortion arises during machining of metallic parts from two main mechanisms: 1) release of bulk residual stress (BRS) in the pre-form, and 2) permanent deformation induced by cut tools. Interaction between these mechanisms is unexplored.

    Objective

    Assess this interaction using aluminum samples that have a flat surface with variations of BRS, where that surface is subsequently milled, and we observe milling-induced residual stress (MIRS) and distortion.

    Methods

    Plate samples are cut from two kinds of large blocks, one kind stress-relieved by stretching and a second kind solution heat treated, quenched and aged. The BRS field in the plates is known from a recent series of measurements, being small in the stress relieved plates (within ±20 MPa) and large (±100 MPa) in the quenched plates, varying from tension to compression over the surface that is milled. MIRS is measured following milling using hole-drilling. Distortions of thin wafers cut at the milled surfaces are used to elucidate BRS/MIRS interactions. A finite element (FE) model and a strength of materials model are each used to assess consistency between wafer distortion and measured MIRS.

    Results

    Milling in samples with high BRS magnitude changes the directions of MIRS and distortion relative to the milling direction, with the direction of maximum curvature rotating toward or away from the milling direction depending on the sign and direction of BRS. High magnitude BRS was also found to increase the wafer peak arc height, nearly doubling the amount found in low BRS samples.

    Conclusion

    Measured residual stress and observed wafer distortion both show interactions between MIRS and BRS. Stress analysis models show that the differences in measured MIRS are consistent with the differences in observed distortion.

     
    more » « less
  3. Abstract Machining-induced residual stresses (MIRS) are a main driver for distortion of thin-walled monolithic aluminum workpieces. Before one can develop compensation techniques to minimize distortion, the effect of machining on the MIRS has to be fully understood. This means that not only an investigation of the effect of different process parameters on the MIRS is important. In addition, the repeatability of the MIRS resulting from the same machining condition has to be considered. In past research, statistical confidence of MIRS of machined samples was not focused on. In this paper, the repeatability of the MIRS for different machining modes, consisting of a variation in feed per tooth and cutting speed, is investigated. Multiple hole-drilling measurements within one sample and on different samples, machined with the same parameter set, were part of the investigations. Besides, the effect of two different clamping strategies on the MIRS was investigated. The results show that an overall repeatability for MIRS is given for stable machining (between 16 and 34% repeatability standard deviation of maximum normal MIRS), whereas instable machining, detected by vibrations in the force signal, has worse repeatability (54%) independent of the used clamping strategy. Further experiments, where a 1-mm-thick wafer was removed at the milled surface, show the connection between MIRS and their distortion. A numerical stress analysis reveals that the measured stress data is consistent with machining-induced distortion across and within different machining modes. It was found that more and/or deeper MIRS cause more distortion. 
    more » « less
  4. Abstract Part design and process parameters directly influence the instantaneous spatiotemporal distribution of temperature in parts made using additive manufacturing (AM) processes. The temporal evolution of temperature in AM parts is termed herein as the thermal profile or thermal history. The thermal profile of the part, in turn, governs the formation of defects, such as porosity and shape distortion. Accordingly, the goal of this work is to understand the effect of the process parameters and the geometry on the thermal profile in AM parts. As a step toward this goal, the objectives of this work are two-fold. First, to develop and apply a finite element-based framework that captures the transient thermal phenomena in the fused filament fabrication (FFF) additive manufacturing of acrylonitrile butadiene styrene (ABS) parts. Second, validate the model-derived thermal profiles with experimental in-process measurements of the temperature trends obtained under different material deposition speeds. In the specific context of FFF, this foray is the critical first-step toward understanding how and why the thermal profile directly affects the degree of bonding between adjacent roads (linear track of deposited material), which in turn determines the strength of the part, as well as, propensity to form defects, such as delamination. From the experimental validation perspective, we instrumented a Hyrel Hydra FFF machine with three non-contact infrared temperature sensors (thermocouples) located near the nozzle (extruder) of the machine. These sensors measure the surface temperature of a road as it is deposited. Test parts are printed under three different settings of feed rate, and subsequently, the temperature profiles acquired from the infrared thermocouples are juxtaposed against the model-derived temperature profiles. Comparison of the experimental and model-derived thermal profiles confirms a high degree of correlation therein, with a mean absolute percentage error less than 6% (root mean squared error <6 °C). This work thus presents one of the first efforts in validating thermal profiles in FFF via direct in situ measurement of the temperature. In our future work, we will focus on predicting defects, such as delamination and inter-road porosity based on the thermal profile. 
    more » « less
  5. Andrew Yeh-Ching Nee, editor-ion-chief (Ed.)
    Wire arc additive manufacturing (WAAM) has received increasing use in 3D printing because of its high deposition rates suitable for components with large and complex geometries. However, the lower forming accuracy of WAAM than other metal additive manufacturing methods has imposed limitations on manufacturing components with high precision. To resolve this issue, we herein implemented the hybrid manufacturing (HM) technique, which integrated WAAM and subtractive manufacturing (via a milling process), to attain high forming accuracy while taking advantage of both WAAM and the milling process. We describe in this paper the design of a robot-based HM platform in which the WAAM and CNC milling are integrated using two robotic arms: one for WAAM and the other for milling immediately following WAAM. The HM was demonstrated with a thin-walled aluminum 5356 component, which was inspected by X-ray micro-computed tomography (μCT) for porosity visualization. The temperature and cutting forces in the component under milling were acquired for analysis. The surface roughness of the aluminum component was measured to assess the surface quality. In addition, tensile specimens were cut from the components using wire electrical discharge machining (WEDM) for mechanical testing. Both machining quality and mechanical properties were found satisfactory; thus the robot-based HM platform was shown to be suitable for manufacturing high-quality aluminum parts. 
    more » « less