Aspheric lenses reduce aberration and provide sharper images with improved spot size compared to spherical lenses. This paper demonstrates that applying shear flow can produce plano‐concave liquid crystal (LC) lens arrays with paraboloid aspheric profiles. The focal length of individual lenses, with a 0.2 mm aperture, decreases from 0.67 to 0.45 mm as the chiral dopant increases from 0 to 6 wt%. The focal length is also sensitive to the polarization state of the incoming light. The lenses are stabilized by photopolymerizing with 6 wt% of reactive monomer added to the LC. A qualitative explanation for the flow‐induced lens formation and the optical properties of the lenses is provided. The potential tunability of the lenses in various fields and their use as paraboloid reflectors are discussed.
The majority of optical lenses have spherical surface profiles because they are convenient to fabricate. Replacing spherical optics with aspheric optics leads to smaller size, lighter weight, and less complicated optical systems with a superior imaging quality. However, fabrication of aspheric lenses is expensive and time-consuming. Here, we introduce a straightforward and low-cost casting method to fabricate polymeric aspheric lenses. An elastomeric ferrogel was formed into an aspherical profile by using a designed magnetic field and then was used as a mold. Different types of aspherical profiles from parabola to hyperbola can be formed with this method by tuning the magnetic field. A home-built Shack–Hartmann sensor was employed to characterize the cast polymeric lenses. The effects of magnetic field intensity, gradient of the magnetic field, and magnetic susceptibility of the ferrogel on the lens profiles were investigated. This technique can be used for rapid-forming polymeric aspherical lenses with different sizes and shapes.
more » « less- NSF-PAR ID:
- 10138146
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Applied Optics
- Volume:
- 59
- Issue:
- 8
- ISSN:
- 1559-128X; APOPAI
- Format(s):
- Medium: X Size: Article No. 2632
- Size(s):
- Article No. 2632
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Though 3D printing shows potential in fabricating complex optical components rapidly, its poor surface quality and dimensional accuracy render it unqualified for industrial optics applications. The layer steps in the building direction and the pixelated steps on each layer's contour result in inevitable microscale defects on the 3D‐printed surface, far away from the nanoscale roughness required for optics. This paper reports a customized vat photopolymerization‐based lens printing process, integrating unfocused image projection and precision spin coating to solve lateral and vertical stair‐stepping defects. A precision aspherical lens with less than 1 nm surface roughness and 1 µm profile accuracy is demonstrated. The 3D‐printed convex lens achieves a maximum MTF resolution of 347.7 lp mm−1. A mathematical model is established to predict and control the spin coating process on 3D‐printed surfaces precisely. Leveraging this low‐cost yet highly robust and repeatable 3D printing process, the precision fabrication of multi‐scale spherical, aspherical, and axicon lenses are showcased with sizes ranging from 3 to 70 mm using high clear photocuring resins. Additionally, molds are also printed to form multi‐scale PDMS‐based lenses.
-
In this study, a novel fabrication process, to the best of our knowledge, was developed to fabricate a glass harmonic diffractive lens. In this process, a polymethylmethacrylate master of the diffractive lens was machined using single-point diamond turning. Then an electrolytic plating process was conducted to grow a reverse nickel (Ni) mold. Precision compression molding was performed using the Ni mold to replicate the diffractive lens structures onto a glass surface. Surface measurements and optical testing show that the replicated diffractive lenses by the proposed method have high tolerances and require optical performance, demonstrating a high-volume, high-precision, and cost-effective process. The proposed method will be critical for consumer products where glass optics are increasingly used in lens assemblies.
-
Abstract 3D printing of optics has gained significant attention in optical industry, but most of the research has been focused on organic polymers. In spite of recent progress in 3D printing glass, 3D printing of precision glass optics for imaging applications still faces challenges from shrinkage during printing and thermal processing, and from inadequate surface shape and quality to meet the requirements for imaging applications. This paper reports a new liquid silica resin (LSR) with higher curing speed, better mechanical properties, lower sintering temperature, and reduced shrinkage, as well as the printing process for high‐precision glass optics for imaging applications. It is demonstrated that the proposed material and printing process can print almost all types of optical surfaces, including flat, spherical, aspherical, freeform, and discontinuous surfaces, with accurate surface shape and high surface quality for imaging applications. It is also demonstrated that the proposed method can print complex optical systems with multiple optical elements, completely removing the time‐consuming and error‐prone alignment process. Most importantly, the proposed printing method is able to print optical systems with active moving elements, significantly improving system flexibility and functionality. The printing method will enable the much‐needed transformational manufacturing of complex freeform glass optics that are currently inaccessible with conventional processes.
-
Varifocal optics have a variety of applications in imaging systems. Metasurfaces offer control of the phase, transmission, and polarization of light using subwavelength engineered structures. However, conventional metasurface designs lack dynamic wavefront shaping which limits their application. In this work, we design and fabricate 3D doublet metalenses with a tunable focal length. The phase control of light is obtained through the mutual rotation of the singlet structures. Inspired by Moiré lenses, the proposed structure consists of two all-dielectric metasurfaces. The singlets have reverse-phase profiles resulting in the cancellation of the phase shift in the nominal position. In this design, we show that the mutual rotation of the elements produces different wavefronts with quadratic radial dependence. Thus, an input plane wave is converted to spherical wavefronts whose focal length depends on the rotation. We use a combination of a nanopillar and a phase plate as the unit cell structure working at a wavelength of 1500 nm. Our design holds promise for a range of applications such as zoom lenses, microscopy, and augmented reality.