skip to main content


Title: Independent Component-Based Spatiotemporal Clutter Filtering for Slow Flow Ultrasound
(Early Access) Effective tissue clutter filtering is critical for non-contrast ultrasound imaging of slow blood flow in small vessels. Independent component analysis (ICA) has been considered by other groups for ultrasound clutter filtering in the past and was shown to be superior to principal component analysis (PCA)-based methods. However, it has not been considered specifically for slow flow applications or revisited since the onset of other slow flow-focused advancements in beamforming and tissue filtering, namely angled plane wave beamforming and full spatiotemporal singular value decomposition (SVD) (i.e., PCA-based) tissue filtering. In this work, we aim to develop a full spatiotemporal ICA-based tissue filtering technique facilitated by plane wave applications and compare it to SVD filtering. We compare ICA and SVD filtering in terms of optimal image quality in simulations and phantoms as well as in terms of optimal correlation to ground truth blood signal in simulations. Additionally, we propose an adaptive blood independent component sorting and selection method. We show that optimal and adaptive ICA can consistently separate blood from tissue better than principal component analysis (PCA)-based methods using simulations and phantoms. Additionally we demonstrate initial in vivo feasibility in ultrasound data of a liver tumor.  more » « less
Award ID(s):
1750994
NSF-PAR ID:
10138177
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE Transactions on Medical Imaging
ISSN:
0278-0062
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. (Early Access) Acoustic clutter is a primary source of image degradation in ultrasound imaging. In the context of flow imaging, tissue and acoustic clutter signals are often much larger in magnitude than the blood signal, which limits the sensitivity of conventional power Doppler in SNR-limited environments. This has motivated the development of coherence-based beamformers, including Coherent Flow Power Doppler (CFPD), which have demonstrated efficacy in mitigating sources of diffuse clutter. However, CFPD uses a measure of normalized coherence, which incurs a non-linear relationship between image intensity and the magnitude of the blood echo. As a result, CFPD is not a robust approach to study gradation of blood signal energy, which depicts the fractional moving blood volume. We propose the application of mutual intensity, rather than normalized coherence, to retain the clutter suppression capability inherent in coherence beamforming, while preserving the underlying signal energy. Feasibility of this approach was shown via Field II simulations, phantoms, and in vivo human liver data. In addition, we derive an adaptive statistical threshold for the suppression of residual noise signals. Overall, this beamformer design shows promise as an alternative technique to depict flow volume gradation in cluttered imaging environments. 
    more » « less
  2. Ultrasonic flow imaging remains susceptible to cluttered imaging environments, which often results in degraded image quality. Coherent Flow Power Doppler (CFPD)–a beamforming technique–has demonstrated efficacy in addressing sources of diffuse clutter. CFPD depicts the normalized spatial coherence of the backscattered echo, which is described by the van Cittert-Zernike theorem. However, the use of a normalized coherence metric in CFPD uncouples the image intensity from the magnitude of the underlying blood echo. As a result, CFPD is not a robust approach to study gradation in blood echo energy, which depicts the fractional moving blood volume. We have developed a modified beamforming scheme, termed power-preserving Coherent Flow Power Doppler (ppCFPD), which employs a measure of signal covariance across the aperture, rather than normalized coherence. As shown via Field II simulations, this approach retains the clutter suppression capability of CFPD, while preserving the underlying signal energy, similar to standard power Doppler (PD). Furthermore, we describe ongoing work, in which we have proposed a thresholding scheme derived from a statistical analysis of additive noise, to further improve perception of flow. Overall, this adaptive approach shows promise as an alternative technique to depict flow gradation in cluttered imaging environments. 
    more » « less
  3. Suppose certain data points are overly contaminated, then the existing principal component analysis (PCA) methods are frequently incapable of filtering out and eliminating the excessively polluted ones, which potentially lead to the functional degeneration of the corresponding models. To tackle the issue, we propose a general framework namely robust weight learning with adaptive neighbors (RWL-AN), via which adaptive weight vector is automatically obtained with both robustness and sparse neighbors. More significantly, the degree of the sparsity is steerable such that only exact k well-fitting samples with least reconstruction errors are activated during the optimization, while the residual samples, i.e., the extreme noised ones are eliminated for the global robustness. Additionally, the framework is further applied to PCA problem to demonstrate the superiority and effectiveness of the proposed RWL-AN model. 
    more » « less
  4. null (Ed.)
    High-fidelity blood flow modelling is crucial for enhancing our understanding of cardiovascular disease. Despite significant advances in computational and experimental characterization of blood flow, the knowledge that we can acquire from such investigations remains limited by the presence of uncertainty in parameters, low resolution, and measurement noise. Additionally, extracting useful information from these datasets is challenging. Data-driven modelling techniques have the potential to overcome these challenges and transform cardiovascular flow modelling. Here, we review several data-driven modelling techniques, highlight the common ideas and principles that emerge across numerous such techniques, and provide illustrative examples of how they could be used in the context of cardiovascular fluid mechanics. In particular, we discuss principal component analysis (PCA), robust PCA, compressed sensing, the Kalman filter for data assimilation, low-rank data recovery, and several additional methods for reduced-order modelling of cardiovascular flows, including the dynamic mode decomposition and the sparse identification of nonlinear dynamics. All techniques are presented in the context of cardiovascular flows with simple examples. These data-driven modelling techniques have the potential to transform computational and experimental cardiovascular research, and we discuss challenges and opportunities in applying these techniques in the field, looking ultimately towards data-driven patient-specific blood flow modelling. 
    more » « less
  5. Ultrasonic flow imaging remains susceptible to cluttered imaging environments, which often results in degraded image quality. Coherent Flow Power Doppler (CFPD) is a beamforming technique that has demonstrated efficacy in mitigating the presence of diffuse clutter in flow images. CFPD depicts the normalized aperture domain coherence of the backscattered echo, which is described by the van Cittert-Zernike theorem. However, the use of a normalized coherence metric uncouples the image intensity from the underlying blood signal energy. As a result, CFPD is not a robust approach to study gradation in blood signal energy, which depicts the fractional moving blood volume. We have developed a modified beamforming scheme, termed power-preserving Coherent Flow Power Doppler (ppCFPD), which depicts a measure of mutual intensity, rather than normalized coherence. This approach retains the clutter suppression capability of CFPD, while preserving sensitivity toward the underlying signal energy, similar to conventional power Doppler. Efficacy of this approach was shown via Field II simulations, and in vivo feasibility was demonstrated in a human liver. Overall, this adapted approach shows promise as an alternative technique to depict flow gradation in cluttered imaging environments. 
    more » « less