skip to main content


Title: Pharmacological Inhibition of REST in Glioblastoma
Introduction: RE1-silencing transcription factor (REST) silences neuronal differentiation genes. Its overexpression in an aggressive subset of gliomas is believed to support the enhanced tumor-initiating and self-renewal capacities of glioblastoma cancer stem cells (GSCs). Therefore, REST knockdown is hypothesized to inhibit tumor growth and recurrence. Because REST, as a large protein, is difficult to target directly with small molecules, our study focuses on knocking down REST by inhibiting one of its regulatory enzymes, small C-terminal domain phosphatase 1 (SCP1). Dephosphorylation of REST by SCP1 protects the former from degradation; consequently, SCP1 inhibition with an experimental drug, T62, is expected to reduce REST protein levels. This REST knockdown is hypothesized to induce the expression of neuronal differentiation genes, thereby forcing differentiation of GSCs and making them more vulnerable to standard treatments. We begin our study by validating patient-derived GSC lines and subsequently testing the efficacy of T62 drug in these cells. Our work supports an effort to understand various molecular pathologies of GBM and its intrinsic GSCs in order to develop novel therapeutic strategies.  more » « less
Award ID(s):
1757885
NSF-PAR ID:
10138564
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2019 BMES Conference Proceedings - REU Abstract Accepted Poster
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    NKX3.1, a prostate-specific tumor suppressor, is either genomically lost or its protein levels are severely downregulated, which are invariably associated with poor prognosis in prostate cancer (PCa). Nevertheless, a clear disconnect exists between its mRNA and protein levels, indicating that its post-translational regulation may be critical in maintaining its protein levels. Similarly, AURKA is vastly overexpressed in all stages of prostate cancer (PCa), including castration-resistant PCa (CRPC) and neuroendocrine PCa (NEPC), although its transcripts are only increased in ~ 15% of cases, hinting at additional mechanisms of deregulation. Thus, identifying the upstream regulators that control AURKA and NKX3.1’s levels and/or their downstream effectors offer an alternative route to inhibit AURKA and upregulate NKX3.1 in highly fatal CRPC and NEPC. AURKA and NKX3.1 have not linked to each other in any study to date.

    Methods

    A chemical genetic screen revealed NKX3.1 as a direct target of AURKA. AURKA-NKX3.1 cross-talk was analyzed using several biochemical techniques in CRPC and NEPC cells.

    Results

    We uncovered a reciprocal loop between AURKA and NKX3.1 in CRPC and NEPC cells. We observed that AURKA-mediated NKX3.1 downregulation is a major mechanism that drives CRPC pathogenesis and NEPC differentiation. AURKA phosphorylates NKX3.1 at three sites, which degrades it, but AURKA does not regulate NKX3.1 mRNA levels. NKX3.1 degradation drives highly aggressive oncogenic phenotypes in cells. NKX3.1 also degrades AURKA in a feedback loop. NKX3.1-AURKA loop thus upregulates AKT, ARv7 and Androgen Receptor (AR)-signaling in tandem promoting highly malignant phenotypes. Just as importantly, we observed that NKX3.1 overexpression fully abolished synaptophysin and enolase expression in NEPC cells, uncovering a strong negative relationship between NKX3.1 and neuroendocrine phenotypes, which was further confirmed be measuring neurite outgrowth. While WT-NKX3.1 inhibited neuronal differentiation, 3A-NKX3.1 expression obliterated it.

    Conclusions

    NKX3.1 loss could be a major mechanism causing AURKA upregulation in CRPC and NEPC and vice versa. NKX3.1 genomic loss requires gene therapy, nonetheless, targeting AURKA provides a powerful tool to maintain NKX3.1 levels. Conversely, when NKX3.1 upregulation strategy using small molecules comes to fruition, AURKA inhibition should work synergistically due to the reciprocal loop in these highly aggressive incurable diseases.

     
    more » « less
  2. Abstract Background

    Doublecortin‐like kinase1 and 2 (DCLKs) are protein Ser/Thr kinases important for neuronal development. More recently, they are also reported to regulate plasticity such as cell proliferation and differentiation of stem cells and cancer cells, but the details of their functions in this biological context are still unclear. With an attempt to reveal the functions of DCLKs in plasticity regulation, we here used the sea urchin embryo that undergoes highly regulative development as an experimental model.

    Results

    We found that both the transcripts and the proteins of DCLKs are uniformly present during early embryogenesis and with some enrichment in mesenchymal cells after gastrula stage. Knockdown of DCLKs induced general developmental delay and defects at day 2. Further, the damage on the embryo/larva induced ectopic expression of DCLKs in the ectoderm where the damage was most severe. Under a tumor‐prone or ‐suppressive condition, DCLKs expression was upregulated or downregulated, respectively, after damage. In both cases, the embryos showed severe developmental defects.

    Conclusions

    Taken together, a transient upregulation of DCLKs appears to be involved in a damage response both during normal and abnormal development, and which could result in different phenotypes in a context dependent manner.

     
    more » « less
  3. Abstract Background Pancreatic cancer is a complex disease with a desmoplastic stroma, extreme hypoxia, and inherent resistance to therapy. Understanding the signaling and adaptive response of such an aggressive cancer is key to making advances in therapeutic efficacy. Redox factor-1 (Ref-1), a redox signaling protein, regulates the conversion of several transcription factors (TFs), including HIF-1α, STAT3 and NFκB from an oxidized to reduced state leading to enhancement of their DNA binding. In our previously published work, knockdown of Ref-1 under normoxia resulted in altered gene expression patterns on pathways including EIF2, protein kinase A, and mTOR. In this study, single cell RNA sequencing (scRNA-seq) and proteomics were used to explore the effects of Ref-1 on metabolic pathways under hypoxia. Methods scRNA-seq comparing pancreatic cancer cells expressing less than 20% of the Ref-1 protein was analyzed using left truncated mixture Gaussian model and validated using proteomics and qRT-PCR. The identified Ref-1’s role in mitochondrial function was confirmed using mitochondrial function assays, qRT-PCR, western blotting and NADP assay. Further, the effect of Ref-1 redox function inhibition against pancreatic cancer metabolism was assayed using 3D co-culture in vitro and xenograft studies in vivo. Results Distinct transcriptional variation in central metabolism, cell cycle, apoptosis, immune response, and genes downstream of a series of signaling pathways and transcriptional regulatory factors were identified in Ref-1 knockdown vs Scrambled control from the scRNA-seq data. Mitochondrial DEG subsets downregulated with Ref-1 knockdown were significantly reduced following Ref-1 redox inhibition and more dramatically in combination with Devimistat in vitro. Mitochondrial function assays demonstrated that Ref-1 knockdown and Ref-1 redox signaling inhibition decreased utilization of TCA cycle substrates and slowed the growth of pancreatic cancer co-culture spheroids. In Ref-1 knockdown cells, a higher flux rate of NADP + consuming reactions was observed suggesting the less availability of NADP + and a higher level of oxidative stress in these cells. In vivo xenograft studies demonstrated that tumor reduction was potent with Ref-1 redox inhibitor similar to Devimistat. Conclusion Ref-1 redox signaling inhibition conclusively alters cancer cell metabolism by causing TCA cycle dysfunction while also reducing the pancreatic tumor growth in vitro as well as in vivo. 
    more » « less
  4. null (Ed.)
    The basic helix-loop-helix (bHLH) transcription factors inhibitor of differentiation 1 (Id1) and inhibitor of differentiation 3 (Id3) (referred to as Id) have an important role in maintaining the cancer stem cell (CSC) phenotype in the triple-negative breast cancer (TNBC) subtype. In this study, we aimed to understand the molecular mechanism underlying Id control of CSC phenotype and exploit it for therapeutic purposes. We used two different TNBC tumor models marked by either Id depletion or Id1 expression in order to identify Id targets using a combinatorial analysis of RNA sequencing and microarray data. Phenotypically, Id protein depletion leads to cell cycle arrest in the G0/G1 phase, which we demonstrate is reversible. In order to understand the molecular underpinning of Id proteins on the cell cycle phenotype, we carried out a large-scale small interfering RNA (siRNA) screen of 61 putative targets identified by using genomic analysis of two Id TNBC tumor models. Kinesin Family Member 11 (Kif11) and Aurora Kinase A (Aurka), which are critical cell cycle regulators, were further validated as Id targets. Interestingly, unlike in Id depletion conditions, Kif11 and Aurka knockdown leads to a G2/M arrest, suggesting a novel Id cell cycle mechanism, which we will explore in further studies. Therapeutic targeting of Kif11 to block the Id1–Kif11 axis was carried out using small molecular inhibitor ispinesib. We finally leveraged our findings to target the Id/Kif11 pathway using the small molecule inhibitor ispinesib in the Id+ CSC results combined with chemotherapy for better response in TNBC subtypes. This work opens up exciting new possibilities of targeting Id targets such as Kif11 in the TNBC subtype, which is currently refractory to chemotherapy. Targeting the Id1–Kif11 molecular pathway in the Id1+ CSCs in combination with chemotherapy and small molecular inhibitor results in more effective debulking of TNBC. 
    more » « less
  5. Tumor-initiating cells contained within the aggressive brain tumor glioma (glioma stem cells, GSCs) promote radioresistance and disease recurrence. However, mechanisms of resistance are not well understood. Herein, we show that the proteome-level regulation occurring upon radiation treatment of several patient-derived GSC lines predicts their resistance status, whereas glioma transcriptional subtypes do not. We identify a mechanism of radioresistance mediated by the transfer of the metabolic enzyme NAMPT to radiosensitive cells through microvesicles (NAMPT-high MVs) shed by resistant GSCs. NAMPT-high MVs rescue the proliferation of radiosensitive GSCs and fibroblasts upon irradiation, and upon treatment with a radiomimetic drug or low serum, and increase intracellular NAD(H) levels. Finally, we show that the presence of NAMPT within the MVs and its enzymatic activity in recipient cells are necessary to mediate these effects. Collectively, we demonstrate that the proteome of GSCs provides unique information as it predicts the ability of glioma to resist radiation treatment. Furthermore, we establish NAMPT transfer via MVs as a mechanism for rescuing the proliferation of radiosensitive cells upon irradiation. 
    more » « less