skip to main content


Title: Trib1 regulates T cell differentiation during chronic infection by restraining the effector program

In chronic infections, the immune response fails to control virus, leading to persistent antigen stimulation and the progressive development of T cell exhaustion. T cell effector differentiation is poorly understood in the context of exhaustion, but targeting effector programs may provide new strategies for reinvigorating T cell function. We identified Tribbles pseudokinase 1 (Trib1) as a central regulator of antiviral T cell immunity, where loss of Trib1 led to a sustained enrichment of effector-like KLRG1+ T cells, enhanced function, and improved viral control. Single-cell profiling revealed that Trib1 restrains a population of KLRG1+ effector CD8 T cells that is transcriptionally distinct from exhausted cells. Mechanistically, we identified an interaction between Trib1 and the T cell receptor (TCR) signaling activator, MALT1, which disrupted MALT1 signaling complexes. These data identify Trib1 as a negative regulator of TCR signaling and downstream function, and reveal a link between Trib1 and effector versus exhausted T cell differentiation that can be targeted to improve antiviral immunity.

 
more » « less
NSF-PAR ID:
10138833
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1084
Date Published:
Journal Name:
Journal of Experimental Medicine
Volume:
217
Issue:
5
ISSN:
0022-1007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transgenic coexpression of a class I–restricted tumor antigen–specific T cell receptor (TCR) and CD8αβ (TCR8) redirects antigen specificity of CD4 + T cells. Reinforcement of biophysical properties and early TCR signaling explain how redirected CD4 + T cells recognize target cells, but the transcriptional basis for their acquired antitumor function remains elusive. We, therefore, interrogated redirected human CD4 + and CD8 + T cells by single-cell RNA sequencing and characterized them experimentally in bulk and single-cell assays and a mouse xenograft model. TCR8 expression enhanced CD8 + T cell function and preserved less differentiated CD4 + and CD8 + T cells after tumor challenge. TCR8 + CD4 + T cells were most potent by activating multiple transcriptional programs associated with enhanced antitumor function. We found sustained activation of cytotoxicity, costimulation, oxidative phosphorylation– and proliferation-related genes, and simultaneously reduced differentiation and exhaustion. Our study identifies molecular features of TCR8 expression that can guide the development of enhanced immunotherapies. 
    more » « less
  2. Inhibitory signals through the PD-1 pathway regulate T cell activation, T cell tolerance, and T cell exhaustion. Studies of PD-1 function have focused primarily on effector T cells. Far less is known about PD-1 function in regulatory T (T reg) cells. To study the role of PD-1 in T reg cells, we generated mice that selectively lack PD-1 in T reg cells. PD-1–deficient T reg cells exhibit an activated phenotype and enhanced immunosuppressive function. The in vivo significance of the potent suppressive capacity of PD-1–deficient T reg cells is illustrated by ameliorated experimental autoimmune encephalomyelitis (EAE) and protection from diabetes in nonobese diabetic (NOD) mice lacking PD-1 selectively in T reg cells. We identified reduced signaling through the PI3K–AKT pathway as a mechanism underlying the enhanced suppressive capacity of PD-1–deficient T reg cells. Our findings demonstrate that cell-intrinsic PD-1 restraint of T reg cells is a significant mechanism by which PD-1 inhibitory signals regulate T cell tolerance and autoimmunity.

     
    more » « less
  3. Besides the central role of classical Major Histocompatibility Complex (MHC) class Ia-restricted conventional Cluster of Differentiation 8 (CD8) T cells in antiviral host immune response, the amphibian Xenopus laevis critically rely on MHC class I-like (mhc1b10.1.L or XNC10)-restricted innate-like (i)T cells (iVα6 T cells) to control infection by the ranavirus Frog virus 3 (FV3). To complement and extend our previous reverse genetic studies showing that iVα6 T cells are required for tadpole survival, as well as for timely and effective adult viral clearance, we examined the conditions and kinetics of iVα6 T cell response against FV3. Using a FV3 knock-out (KO) growth-defective mutant, we found that upregulation of the XNC10 restricting class I-like gene and the rapid recruitment of iVα6 T cells depend on detectable viral replication and productive FV3 infection. In addition, by in vivo depletion with XNC10 tetramers, we demonstrated the direct antiviral effector function of iVα6 T cells. Notably, the transitory iV6 T cell defect delayed innate interferon and cytokine gene response, resulting in long-lasting negative inability to control FV3 infection. These findings suggest that in Xenopus and likely other amphibians, an immune surveillance system based on the early activation of iT cells by non-polymorphic MHC class-I like molecules is important for efficient antiviral immune response. 
    more » « less
  4. T cell exhaustion limits immune responses against cancer and is a major cause of resistance to chimeric antigen receptor (CAR)–T cell therapeutics. Using murine xenograft models and an in vitro model wherein tonic CAR signaling induces hallmark features of exhaustion, we tested the effect of transient cessation of receptor signaling, or rest, on the development and maintenance of exhaustion. Induction of rest through enforced down-regulation of the CAR protein using a drug-regulatable system or treatment with the multikinase inhibitor dasatinib resulted in the acquisition of a memory-like phenotype, global transcriptional and epigenetic reprogramming, and restored antitumor functionality in exhausted CAR-T cells. This work demonstrates that rest can enhance CAR-T cell efficacy by preventing or reversing exhaustion, and it challenges the notion that exhaustion is an epigenetically fixed state.

     
    more » « less
  5. Viral Hemorrhagic Septicemia virus (VHSV) is a pathogenic fish rhabdovirus found in discrete locales throughout the northern hemisphere. VHSV infection of fish cells leads to upregulation of the host's virus detection response, but the virus quickly suppresses interferon (IFN) production and antiviral genes expression. By systematically screening each of the six VHSV structural and nonstructural genes, we have identified matrix protein (M) as its most potent anti-host protein. VHSV-IVb M alone suppressed mitochondrial antiviral signaling protein (MAVS) and type I IFN-induced gene expression in a dose-dependent manner. M also suppressed the constitutively active SV40 promoter and globally decreased cellular RNA levels. Chromatin immunoprecipitation (ChIP) studies illustrated that M inhibited RNA polymerase II (RNAP II) recruitment to gene promoters, and decreased RNAP II CTD Ser2 phosphorylation during VHSV infection. However, transcription directed by RNAP I-III was suppressed by M. To identify regions of functional importance, M proteins from a variety of VHSV strains were tested in cell-based transcriptional inhibition assays. M protein of a particular VHSV-Ia strain, F1, was significantly less potent than -IVb M at inhibiting SV40/luc expression, yet differed by just four amino acids. Mutation of D62 to alanine alone, or in combination with an E181 to alanine mutation (D62A/E181A), dramatically reduced the ability of -IVb M to suppress host transcription. Introducing either M D62A or D62A/E181A mutations into VHSV-IVb via reverse genetics resulted in viruses that replicated efficiently but exhibited less cytotoxicity and reduced anti-transcriptional activities, implicating M as a primary regulator of cytopathicity and host transcriptional suppression. Importance: Viruses must suppress host antiviral responses to replicate and spread between hosts. In these studies, we identified the matrix protein of the deadly fish Novirhabdovirus, VHSV, as a critical mediator of host suppression during infection. Our studies indicated that M alone could block cellular gene expression at very low expression levels. We identified several subtle mutations in M that were less potent at suppressing host transcription. When these mutations were engineered back into recombinant viruses, the resulting viruses replicated well but elicited less toxicity in infected cells and activated host innate immune responses more robustly. These data demonstrated that VHSV M plays an important role in mediating both virus-induced cell toxicity and viral replication. Our data suggest that its roles in these two processes can be separated to design effective attenuated viruses for vaccine candidates. 
    more » « less