Collaborating scientists and storytellers successfully built a university-based science-in-action video storytelling model to test the research question: Can university scientists increase their relatability and public engagement through science-in-action video storytelling? Developed over 14 years, this science storytelling model produced more than a dozen high-visibility narratives that translated science to the public and featured scientists, primarily environmental and climate scientists, who are described in audience surveys as relatable people. This collaborative model, based on long-term trusting partnerships between scientists and video storytellers, documented scientists as they conducted their research and together created narratives intended to humanize scientists as authentic people on journeys of discovery. Unlike traditional documentary filmmaking or journalism, the participatory nature of this translational science model involved scientists in the shared making of narratives to ensure the accuracy of the story's science content. Twelve science and research video story products have reached broad audiences through a variety of venues including television and online streaming platforms such as Public Broadcasting Service (PBS), Netflix, PIVOT TV, iTunes, and Kanopy. With a reach of over 180 million potential public audience viewers, we have demonstrated the effectiveness of this model to produce science and environmental narratives that appeal to the public. Results from post-screening surveys with public, high school, and undergraduate audiences showed perceptions of scientists as relatable. Our data includes feedback from undergraduate and high school students who participated in the video storytelling processes and reported increased relatability to both scientists and science. In 2022, we surveyed undergraduate students using a method that differentiated scientists' potential relatable qualities with scientists' passion for their work, and the scientists' motivation to help others, consistently associated with relatability. The value of this model to scientists is offered throughout this paper as two of our authors are biological scientists who were featured in our original science-in-action videos. Additionally, this model provides a time-saving method for scientists to communicate their research. We propose that translational science stories created using this model may provide audiences with opportunities to vicariously experience scientists' day-to-day choices and challenges and thus may evoke audiences' ability to relate to, and trust in, science.
more »
« less
Coproducing Science to Inform Working Lands: The Next Frontier in Nature Conservation
Abstract Conservationists are increasingly convinced that coproduction of science enhances its utility in policy, decision-making, and practice. Concomitant is a renewed reliance on privately owned working lands to sustain nature and people. We propose a coupling of these emerging trends as a better recipe for conservation. To illustrate this, we present five elements of coproduction, contrast how they differ from traditional approaches, and describe the role of scientists in successful partnerships. Readers will find coproduction more demanding than the loading dock approach to science delivery but will also find greater rewards, relevance, and impact. Because coproduction is novel and examples of it are rare, we draw on our roles as scientists within the US Department of Agriculture–led Sage Grouse Initiative, North America's largest effort to conserve the sagebrush ecosystem. As coproduction and working lands evolve, traditional approaches will be replaced in order to more holistically meet the needs of nature and people.
more »
« less
- PAR ID:
- 10139333
- Date Published:
- Journal Name:
- BioScience
- Volume:
- 70
- Issue:
- 1
- ISSN:
- 0006-3568
- Page Range / eLocation ID:
- 90 to 96
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Agrarian communities in the Peruvian Andes depend on local water resources that are threatened by both a changing climate and changes in the socio-politics of water allocation. A community’s local autonomy over water resources and its capacity to plan for a sustainable and secure water future depends, in part, on integrated local environmental knowledge (ILEK), which leverages and blends traditional and western scientific approaches to knowledge production. Over the course of a two-year collaborative water development project with the agrarian district of Zurite, we designed and implemented an applied model of socio-hydrology focused on the coproduction of knowledge among scientists, local knowledge-holders and students. Our approach leveraged knowledge across academic disciplines and cultures, trained students to be valued producers of knowledge, and, most importantly, integrated the needs and concerns of the community. The result is a community-based ILEK that informs sustainable land and water management and has the potential to increase local autonomy over water resources. Furthermore, the direct link between interdisciplinary water science and community benefits empowered students to pursue careers in water development. The long-term benefits of our approach support the inclusion of knowledge coproduction among scholars, students and, in particular, community members, in applied studies of socio-hydrology.more » « less
-
Recruitment and retention of a diverse scientific workforce depends on a more inclusive culture of science. Textbooks introduce prospective scientists to their chosen field and convey its cultural norms. We use ecology textbook data spanning two decades and document little change in representation of scientists during that time. Despite decades of multifaceted efforts to increase diversity in ecology, 91% of founders/innovators and 76% of working scientists introduced in textbooks were white men, poorly matching the demographics of scientists currently publishing in ecology. Textbook images depicted white men working as scientists, while women and people of color were frequently shown as nonscientists. Moreover, textbooks lack discussion of how science and society shape each other. Pathways to increase retention and sense of belonging for individuals from historically excluded groups include updating textbooks to accurately represent the scientists active in the field, contextualizing historical constraints on participation, and revealing how culture shapes scientific investigations.more » « less
-
Science comics have become an increasingly popular medium for science communication. Reputable institutions and publications such as the WHO, NASA, Nature Journal and MacMillan Publishers have published science comics to explain complex scientific and medical phenomena to the public. However, science comics that center the stories of underrepresented scientists and the ways in which their intersectional identities are transforming science have yet to be created. Concerningly, people of color, women, and LGBTQIA+ identifying continue to be underrepresented in STEMM. Studies have shown students who report feeling positive STEMM identity and ability in high school declared undergraduate STEMM majors at greater proportions. Therefore, identifying ways to foster a sense of belonging and personal interest in STEMM among secondary school students is crucial. Utilizing art and narrative storytelling, The Field Scientist challenges perceptions of what science looks like and who does science to make science more accessible, exciting and inclusive for underrepresented secondary school students.. The series follows the real biographical narratives of a diverse cohort of scientists as they recount their most memorable field experiences. The Field Scientist will be available digitally via the platform issuu.com and disseminated to secondary school students. Online surveys will be utilized to elicit audience response, assess feelings of belonging and determine the effectiveness of science comics in challenging perceptions of exclusionary scientific culture and community. Ultimately, The Field Scientist aspires to encourage adolescent audiences to view themselves as scientists and contemplate how their identities can further transform the shifting landscape of science.more » « less
-
Data science has been growing in prominence across both academia and industry, but there is still little formal consensus about how to teach it. Many people who currently teach data science are practitioners such as computational researchers in academia or data scientists in industry. To understand how these practitioner-instructors pass their knowledge onto novices and howthat contrasts with teaching more traditional forms of programming, we interviewed 20 data scientists who teach in settings ranging from small-group workshops to large online courses. We found that: 1) they must empathize with a diverse array of student backgrounds and expectations, 2) they teach technical workflows that integrate authentic practices surrounding code, data, and communication, 3) they face challenges involving authenticity versus abstraction in software setup, finding and curating pedagogically-relevant datasets, and acclimating students to live with uncertainty in data analysis. These findings can point the way toward better tools for data science education and help bring data literacy to more people around the world.more » « less
An official website of the United States government

