Off-label drug use refers to using marketed drugs for indications that are not listed in their FDA labeling information. Such uses are very common and sometimes inevitable in clinical practice. To some extent, off-label drug uses provide a pathway for clinical innovation, however, they could cause serious adverse effects due to lacking scientific research and tests. Since identifying the off-label uses can provide a clue to the stakeholders including healthcare providers, patients, and medication manufacturers to further the investigation on drug efficacy and safety, it raises the demand for a systematic way to detect off-label uses. Given data contributed by health consumers in online health communities (OHCs), we developed an automated approach to detect off-label drug uses based on heterogeneous network mining. We constructed a heterogeneous healthcare network with medical entities (e.g. disease, drug, adverse drug reaction) mined from the text corpus, which involved 50 diseases, 1,297 drugs, and 185 ADRs, and determined 13 meta paths between the drugs and diseases. We developed three metrics to represent the meta-path-based topological features. With the network features, we trained the binary classifiers built on Random Forest algorithm to recognize the known drug-disease associations. The best classification model that used lift to measure path weights obtained F1-score of 0.87, based on which, we identified 1,009 candidates of off-label drug uses and examined their potential by searching evidence from PubMed and FAERS.
more »
« less
Exploiting OHC Data with Tensor Decomposition for Off-Label Drug Use Detection
Off-label drug use is an important healthcare topic as it is quite common and sometimes inevitable in medical practice. Though gaining information about off-label drug uses could benefit a lot of healthcare stakeholders such as patients, physicians, and pharmaceutical companies, there is no such data repository of such information available. There is a desire for a systematic approach to detect off-label drug uses. Other than using data sources such as EHR and clinical notes that are provided by healthcare providers, we exploited social media data especially online health community (OHC) data to detect the off-label drug uses, with consideration of the increasing social media users and the large volume of valuable and timely user-generated contents. We adopted tensor decomposition technique, CP decomposition in this work, to deal with the sparsity and missing data problem in social media data. On the basis of tensor decomposition results, we used two approaches to identify off-label drug use candidates: (1) one is via ranking the CP decomposition resulting components, (2) the other one is applying a heterogeneous network mining method, proposed in our previous work [9], on the reconstructed dataset by CP decomposition. The first approach identified a number of significant off-label use candidates, for which we were able to conduct case studies and found medical explanations for 7 out of 12 identified off-label use candidates. The second approach achieved better performance than the previous method [9] by improving the F1-score by 3%. It demonstrated the effectiveness of performing tensor decomposition on social media data for detecting off-label drug use.
more »
« less
- Award ID(s):
- 1650531
- PAR ID:
- 10139468
- Date Published:
- Journal Name:
- Proceedings of the IEEE International Conference on Healthcare Informatics 2018
- Page Range / eLocation ID:
- 22 to 28
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Off-label drug use is quite common in clinical practice and inevitable to some extent. Such uses might deliver effective treatment and suggest clinical innovation sometimes, however, they have the unknown risk to cause serious outcomes due to lacking scientific support. As gaining information about off-label drug use could present a clue to the stakeholders such as healthcare professionals and medication manufacturers to further the investigation on drug efficacy and safety, it raises the need to develop a systematic way to detect off-label drug uses. Considering the increasing discussions in online health communities (OHCs) among the health consumers, we proposed to harness the large volume of timely information in OHCs to develop an automated method for detecting off-label drug uses from health consumer generated data. From the text corpus, we extracted medical entities (diseases, drugs, and adverse drug reactions) with lexicon-based approaches and measured their interactions with word embedding models, based on which, we constructed a heterogeneous healthcare network. We defined several meta-path-based indicators to describe the drug-disease associations in the heterogeneous network and used them as features to train a binary classifier built on Random Forest algorithm, to recognize the known drug-disease associations. The classification model obtained better results when incorporating word embedding features and achieved the best performance when using both association rule mining features and word embedding features, with F1-score reaching 0.939, based on which, we identified 2,125 possible off-label drug uses and checked their potential by searching evidence in PubMed and FAERS.more » « less
-
Sparse tensor factorization is a popular tool in multi-way data analysis and is used in applications such as cybersecurity, recommender systems, and social network analysis. In many of these applications, the tensor is not known a priori and instead arrives in a streaming fashion for a potentially unbounded amount of time. Existing approaches for streaming sparse tensors are not practical for unbounded streaming because they rely on maintaining the full factorization of the data, which grows linearly with time. In this work, we present CP-stream, an algorithm for streaming factorization in the model of the canonical polyadic decomposition which does not grow linearly in time or space, and is thus practical for long-term streaming. Additionally, CP-stream incorporates user-specified constraints such as non-negativity which aid in the stability and interpretability of the factorization. An evaluation of CP-stream demonstrates that it converges faster than state-of-the-art streaming algorithms while achieving lower reconstruction error by an order of magnitude. We also evaluate it on real-world sparse datasets and demonstrate its usability in both network traffic analysis and discussion tracking. Our evaluation uses exclusively public datasets and our source code is released to the public as part of SPLATT, an open source high-performance tensor factorization toolkit.more » « less
-
Canonical polyadic (CP) decomposition of a tensor is a basic operation in a lot of applications such as data mining and video foreground/background separation. However, existing algorithms for CP decomposition require users to provide a rank of the target tensor data as part of the input and finding the rank of a tensor is an NP-hard problem. Currently, to perform CP decomposition, users are required to make an informed guess of a proper tensor rank based on the data at hand, and the result may still be suboptimal. In this paper, we propose to conduct CP decomposition and tensor rank approximation together, so that users do not have to provide the proper rank beforehand, and the decomposition algorithm will find the proper rank and return a high-quality result. We formulate an optimization problem with an objective function consisting of a least-squares Tikhonov regularization and a sparse L1-regularization term. We also test its effectiveness over real applications with moving object videos.more » « less
-
The CP tensor decomposition is used in applications such as machine learning and signal processing to discover latent low-rank structure in multidimensional data. Computing a CP decomposition via an alternating least squares (ALS) method reduces the problem to several linear least squares problems. The standard way to solve these linear least squares subproblems is to use the normal equations, which inherit special tensor structure that can be exploited for computational efficiency. However, the normal equations are sensitive to numerical ill-conditioning, which can compromise the results of the decomposition. In this paper, we develop versions of the CP-ALS algorithm using the QR decomposition and the singular value decomposition, which are more numerically stable than the normal equations, to solve the linear least squares problems. Our algorithms utilize the tensor structure of the CP-ALS subproblems efficiently, have the same complexity as the standard CP-ALS algorithm when the input is dense and the rank is small, and are shown via examples to produce more stable results when ill-conditioning is present. Our MATLAB implementation achieves the same running time as the standard algorithm for small ranks, and we show that the new methods can obtain lower approximation error.more » « less