skip to main content

Title: Second Opinion: Supporting Last-Mile Person Identification with Crowdsourcing and Face Recognition
As AI-based face recognition technologies are increasingly adopted for high-stakes applications like locating suspected criminals, public concerns about the accuracy of these technologies have grown as well. These technologies often present a human expert with a shortlist of high-confidence candidate faces from which the expert must select correct match(es) while avoiding false positives, which we term the “last-mile problem.” We propose Second Opinion, a web-based software tool that employs a novel crowdsourcing workflow inspired by cognitive psychology, seed-gather-analyze, to assist experts in solving the last-mile problem. We evaluated Second Opinion with a mixed-methods lab study involving 10 experts and 300 crowd workers who collaborate to identify people in historical photos. We found that crowds can eliminate 75% of false positives from the highest-confidence candidates suggested by face recognition, and that experts were enthusiastic about using Second Opinion in their work. We also discuss broader implications for crowd–AI interaction and crowdsourced person identification.  more » « less
Award ID(s):
1651969 1527453
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the Seventh AAAI Conference on Human Computation and Crowdsourcing
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Identifying people in photographs is a critical task in a wide variety of domains, from national security [7] to journalism [14] to human rights investigations [1]. The task is also fundamentally complex and challenging. With the world population at 7.6 billion and growing, the candidate pool is large. Studies of human face recognition ability show that the average person incorrectly identifies two people as similar 20–30% of the time, and trained police detectives do not perform significantly better [11]. Computer vision-based face recognition tools have gained considerable ground and are now widely available commercially, but comparisons to human performance show mixed results at best [2,10,16]. Automated face recognition techniques, while powerful, also have constraints that may be impractical for many real-world contexts. For example, face recognition systems tend to suffer when the target image or reference images have poor quality or resolution, as blemishes or discolorations may be incorrectly recognized as false positives for facial landmarks. Additionally, most face recognition systems ignore some salient facial features, like scars or other skin characteristics, as well as distinctive non-facial features, like ear shape or hair or facial hair styles. This project investigates how we can overcome these limitations to support person identification tasks. By adjusting confidence thresholds, users of face recognition can generally expect high recall (few false negatives) at the cost of low precision (many false positives). Therefore, we focus our work on the “last mile” of person identification, i.e., helping a user find the correct match among a large set of similarlooking candidates suggested by face recognition. Our approach leverages the powerful capabilities of the human vision system and collaborative sensemaking via crowdsourcing to augment the complementary strengths of automatic face recognition. The result is a novel technology pipeline combining collective intelligence and computer vision. We scope this project to focus on identifying soldiers in photos from the American Civil War era (1861– 1865). An estimated 4,000,000 soldiers fought in the war, and most were photographed at least once, due to decreasing costs, the increasing robustness of the format, and the critical events separating friends and family [17]. Over 150 years later, the identities of most of these portraits have been lost, but as museums and archives increasingly digitize and publish their collections online, the pool of reference photos and information has never been more accessible. Historians, genealogists, and collectors work tirelessly to connect names with faces, using largely manual identification methods [3,9]. Identifying people in historical photos is important for preserving material culture [9], correcting the historical record [13], and recognizing contributions of marginalized groups [4], among other reasons. 
    more » « less
  2. Identifying people in photographs is an important task in many fields, including history, journalism, genealogy, and collecting, but accurate person identification remains challenging. Researchers especially struggle with the “last-mile problem” of historical person identification, where they must make a selection among a small number of highly similar candidates. We present SleuthTalk, a web-based collaboration tool integrated into the public website Civil War Photo Sleuth which addresses the last-mile problem in historical person identification by providing support for shortlisting potential candidates from face recognition results, private collaborative workspaces, and structured feedback. 
    more » « less
  3. AI-based educational technologies may be most welcome in classrooms when they align with teachers' goals, preferences, and instructional practices. Teachers, however, have scarce time to make such customizations themselves. How might the crowd be leveraged to help time-strapped teachers? Crowdsourcing pipelines have traditionally focused on content generation. It is an open question how a pipeline might be designed so the crowd can succeed in a revision/customization task. In this paper, we explore an initial version of a teacher-guided crowdsourcing pipeline designed to improve the adaptive math hints of an AI-based tutoring system so they fit teachers' preferences, while requiring minimal expert guidance. In two experiments involving 144 math teachers and 481 crowdworkers, we found that such an expert-guided revision pipeline could save experts' time and produce better crowd-revised hints (in terms of teacher satisfaction) than two comparison conditions. The revised hints however, did not improve on the existing hints in the AI tutor, which were carefully-written but still have room for improvement and customization. Further analysis revealed that the main challenge for crowdworkers may lie in understanding teachers' brief written comments and implementing them in the form of effective edits, without introducing new problems. We also found that teachers preferred their own revisions over other sources of hints, and exhibited varying preferences for hints. Overall, the results confirm that there is a clear need for customizing hints to individual teachers' preferences. They also highlight the need for more elaborate scaffolds so the crowd can have specific knowledge of the requirements that teachers have for hints. The study represents a first exploration in the literature of how to support crowds with minimal expert guidance in revising and customizing instructional materials. 
    more » « less
  4. Abstract

    We often need to have beliefs about things on which we are not experts. Luckily, we often have access to expert judgements on such topics. But how should we form our beliefs on the basis of expert opinion when experts conflict in their judgments? This is the core of the novice/2-expert problem in social epistemology. A closely related question is important in the context of policy making: how should a policy maker use expert judgments when making policy in domains in which she is not herself an expert? This question is more complex, given the messy and strategic nature of politics. In this paper we argue that the prediction with expert advice (PWEA) framework from machine learning provides helpful tools for addressing these problems. We outline conditions under which we should expert PWEA to be helpful and those under which we should not expect these methods to perform well.

    more » « less
  5. null (Ed.)
    We study the problem of online learning with primary and secondary losses. For example, a recruiter making decisions of which job applicants to hire might weigh false positives and false negatives equally (the primary loss) but the applicants might weigh false negatives much higher (the secondary loss). We consider the following question: Can we combine "expert advice" to achieve low regret with respect to the primary loss, while at the same time performing {\em not much worse than the worst expert} with respect to the secondary loss? Unfortunately, we show that this goal is unachievable without any bounded variance assumption on the secondary loss. More generally, we consider the goal of minimizing the regret with respect to the primary loss and bounding the secondary loss by a linear threshold. On the positive side, we show that running any switching-limited algorithm can achieve this goal if all experts satisfy the assumption that the secondary loss does not exceed the linear threshold by o(T) for any time interval. If not all experts satisfy this assumption, our algorithms can achieve this goal given access to some external oracles which determine when to deactivate and reactivate experts. 
    more » « less