skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, March 22 until 6:00 AM ET on Saturday, March 23 due to maintenance. We apologize for the inconvenience.


Title: Second Opinion: Supporting Last-Mile Person Identification with Crowdsourcing and Face Recognition
As AI-based face recognition technologies are increasingly adopted for high-stakes applications like locating suspected criminals, public concerns about the accuracy of these technologies have grown as well. These technologies often present a human expert with a shortlist of high-confidence candidate faces from which the expert must select correct match(es) while avoiding false positives, which we term the “last-mile problem.” We propose Second Opinion, a web-based software tool that employs a novel crowdsourcing workflow inspired by cognitive psychology, seed-gather-analyze, to assist experts in solving the last-mile problem. We evaluated Second Opinion with a mixed-methods lab study involving 10 experts and 300 crowd workers who collaborate to identify people in historical photos. We found that crowds can eliminate 75% of false positives from the highest-confidence candidates suggested by face recognition, and that experts were enthusiastic about using Second Opinion in their work. We also discuss broader implications for crowd–AI interaction and crowdsourced person identification.  more » « less
Award ID(s):
1651969 1527453
NSF-PAR ID:
10139506
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the Seventh AAAI Conference on Human Computation and Crowdsourcing
Page Range / eLocation ID:
86-96
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Identifying people in photographs is a critical task in a wide variety of domains, from national security [7] to journalism [14] to human rights investigations [1]. The task is also fundamentally complex and challenging. With the world population at 7.6 billion and growing, the candidate pool is large. Studies of human face recognition ability show that the average person incorrectly identifies two people as similar 20–30% of the time, and trained police detectives do not perform significantly better [11]. Computer vision-based face recognition tools have gained considerable ground and are now widely available commercially, but comparisons to human performance show mixed results at best [2,10,16]. Automated face recognition techniques, while powerful, also have constraints that may be impractical for many real-world contexts. For example, face recognition systems tend to suffer when the target image or reference images have poor quality or resolution, as blemishes or discolorations may be incorrectly recognized as false positives for facial landmarks. Additionally, most face recognition systems ignore some salient facial features, like scars or other skin characteristics, as well as distinctive non-facial features, like ear shape or hair or facial hair styles. This project investigates how we can overcome these limitations to support person identification tasks. By adjusting confidence thresholds, users of face recognition can generally expect high recall (few false negatives) at the cost of low precision (many false positives). Therefore, we focus our work on the “last mile” of person identification, i.e., helping a user find the correct match among a large set of similarlooking candidates suggested by face recognition. Our approach leverages the powerful capabilities of the human vision system and collaborative sensemaking via crowdsourcing to augment the complementary strengths of automatic face recognition. The result is a novel technology pipeline combining collective intelligence and computer vision. We scope this project to focus on identifying soldiers in photos from the American Civil War era (1861– 1865). An estimated 4,000,000 soldiers fought in the war, and most were photographed at least once, due to decreasing costs, the increasing robustness of the format, and the critical events separating friends and family [17]. Over 150 years later, the identities of most of these portraits have been lost, but as museums and archives increasingly digitize and publish their collections online, the pool of reference photos and information has never been more accessible. Historians, genealogists, and collectors work tirelessly to connect names with faces, using largely manual identification methods [3,9]. Identifying people in historical photos is important for preserving material culture [9], correcting the historical record [13], and recognizing contributions of marginalized groups [4], among other reasons. 
    more » « less
  2. null (Ed.)
    The DeepLearningEpilepsyDetectionChallenge: design, implementation, andtestofanewcrowd-sourced AIchallengeecosystem Isabell Kiral*, Subhrajit Roy*, Todd Mummert*, Alan Braz*, Jason Tsay, Jianbin Tang, Umar Asif, Thomas Schaffter, Eren Mehmet, The IBM Epilepsy Consortium◊ , Joseph Picone, Iyad Obeid, Bruno De Assis Marques, Stefan Maetschke, Rania Khalaf†, Michal Rosen-Zvi† , Gustavo Stolovitzky† , Mahtab Mirmomeni† , Stefan Harrer† * These authors contributed equally to this work † Corresponding authors: rkhalaf@us.ibm.com, rosen@il.ibm.com, gustavo@us.ibm.com, mahtabm@au1.ibm.com, sharrer@au.ibm.com ◊ Members of the IBM Epilepsy Consortium are listed in the Acknowledgements section J. Picone and I. Obeid are with Temple University, USA. T. Schaffter is with Sage Bionetworks, USA. E. Mehmet is with the University of Illinois at Urbana-Champaign, USA. All other authors are with IBM Research in USA, Israel and Australia. Introduction This decade has seen an ever-growing number of scientific fields benefitting from the advances in machine learning technology and tooling. More recently, this trend reached the medical domain, with applications reaching from cancer diagnosis [1] to the development of brain-machine-interfaces [2]. While Kaggle has pioneered the crowd-sourcing of machine learning challenges to incentivise data scientists from around the world to advance algorithm and model design, the increasing complexity of problem statements demands of participants to be expert data scientists, deeply knowledgeable in at least one other scientific domain, and competent software engineers with access to large compute resources. People who match this description are few and far between, unfortunately leading to a shrinking pool of possible participants and a loss of experts dedicating their time to solving important problems. Participation is even further restricted in the context of any challenge run on confidential use cases or with sensitive data. Recently, we designed and ran a deep learning challenge to crowd-source the development of an automated labelling system for brain recordings, aiming to advance epilepsy research. A focus of this challenge, run internally in IBM, was the development of a platform that lowers the barrier of entry and therefore mitigates the risk of excluding interested parties from participating. The challenge: enabling wide participation With the goal to run a challenge that mobilises the largest possible pool of participants from IBM (global), we designed a use case around previous work in epileptic seizure prediction [3]. In this “Deep Learning Epilepsy Detection Challenge”, participants were asked to develop an automatic labelling system to reduce the time a clinician would need to diagnose patients with epilepsy. Labelled training and blind validation data for the challenge were generously provided by Temple University Hospital (TUH) [4]. TUH also devised a novel scoring metric for the detection of seizures that was used as basis for algorithm evaluation [5]. In order to provide an experience with a low barrier of entry, we designed a generalisable challenge platform under the following principles: 1. No participant should need to have in-depth knowledge of the specific domain. (i.e. no participant should need to be a neuroscientist or epileptologist.) 2. No participant should need to be an expert data scientist. 3. No participant should need more than basic programming knowledge. (i.e. no participant should need to learn how to process fringe data formats and stream data efficiently.) 4. No participant should need to provide their own computing resources. In addition to the above, our platform should further • guide participants through the entire process from sign-up to model submission, • facilitate collaboration, and • provide instant feedback to the participants through data visualisation and intermediate online leaderboards. The platform The architecture of the platform that was designed and developed is shown in Figure 1. The entire system consists of a number of interacting components. (1) A web portal serves as the entry point to challenge participation, providing challenge information, such as timelines and challenge rules, and scientific background. The portal also facilitated the formation of teams and provided participants with an intermediate leaderboard of submitted results and a final leaderboard at the end of the challenge. (2) IBM Watson Studio [6] is the umbrella term for a number of services offered by IBM. Upon creation of a user account through the web portal, an IBM Watson Studio account was automatically created for each participant that allowed users access to IBM's Data Science Experience (DSX), the analytics engine Watson Machine Learning (WML), and IBM's Cloud Object Storage (COS) [7], all of which will be described in more detail in further sections. (3) The user interface and starter kit were hosted on IBM's Data Science Experience platform (DSX) and formed the main component for designing and testing models during the challenge. DSX allows for real-time collaboration on shared notebooks between team members. A starter kit in the form of a Python notebook, supporting the popular deep learning libraries TensorFLow [8] and PyTorch [9], was provided to all teams to guide them through the challenge process. Upon instantiation, the starter kit loaded necessary python libraries and custom functions for the invisible integration with COS and WML. In dedicated spots in the notebook, participants could write custom pre-processing code, machine learning models, and post-processing algorithms. The starter kit provided instant feedback about participants' custom routines through data visualisations. Using the notebook only, teams were able to run the code on WML, making use of a compute cluster of IBM's resources. The starter kit also enabled submission of the final code to a data storage to which only the challenge team had access. (4) Watson Machine Learning provided access to shared compute resources (GPUs). Code was bundled up automatically in the starter kit and deployed to and run on WML. WML in turn had access to shared storage from which it requested recorded data and to which it stored the participant's code and trained models. (5) IBM's Cloud Object Storage held the data for this challenge. Using the starter kit, participants could investigate their results as well as data samples in order to better design custom algorithms. (6) Utility Functions were loaded into the starter kit at instantiation. This set of functions included code to pre-process data into a more common format, to optimise streaming through the use of the NutsFlow and NutsML libraries [10], and to provide seamless access to the all IBM services used. Not captured in the diagram is the final code evaluation, which was conducted in an automated way as soon as code was submitted though the starter kit, minimising the burden on the challenge organising team. Figure 1: High-level architecture of the challenge platform Measuring success The competitive phase of the "Deep Learning Epilepsy Detection Challenge" ran for 6 months. Twenty-five teams, with a total number of 87 scientists and software engineers from 14 global locations participated. All participants made use of the starter kit we provided and ran algorithms on IBM's infrastructure WML. Seven teams persisted until the end of the challenge and submitted final solutions. The best performing solutions reached seizure detection performances which allow to reduce hundred-fold the time eliptologists need to annotate continuous EEG recordings. Thus, we expect the developed algorithms to aid in the diagnosis of epilepsy by significantly shortening manual labelling time. Detailed results are currently in preparation for publication. Equally important to solving the scientific challenge, however, was to understand whether we managed to encourage participation from non-expert data scientists. Figure 2: Primary occupation as reported by challenge participants Out of the 40 participants for whom we have occupational information, 23 reported Data Science or AI as their main job description, 11 reported being a Software Engineer, and 2 people had expertise in Neuroscience. Figure 2 shows that participants had a variety of specialisations, including some that are in no way related to data science, software engineering, or neuroscience. No participant had deep knowledge and experience in data science, software engineering and neuroscience. Conclusion Given the growing complexity of data science problems and increasing dataset sizes, in order to solve these problems, it is imperative to enable collaboration between people with differences in expertise with a focus on inclusiveness and having a low barrier of entry. We designed, implemented, and tested a challenge platform to address exactly this. Using our platform, we ran a deep-learning challenge for epileptic seizure detection. 87 IBM employees from several business units including but not limited to IBM Research with a variety of skills, including sales and design, participated in this highly technical challenge. 
    more » « less
  3. AI-based educational technologies may be most welcome in classrooms when they align with teachers' goals, preferences, and instructional practices. Teachers, however, have scarce time to make such customizations themselves. How might the crowd be leveraged to help time-strapped teachers? Crowdsourcing pipelines have traditionally focused on content generation. It is an open question how a pipeline might be designed so the crowd can succeed in a revision/customization task. In this paper, we explore an initial version of a teacher-guided crowdsourcing pipeline designed to improve the adaptive math hints of an AI-based tutoring system so they fit teachers' preferences, while requiring minimal expert guidance. In two experiments involving 144 math teachers and 481 crowdworkers, we found that such an expert-guided revision pipeline could save experts' time and produce better crowd-revised hints (in terms of teacher satisfaction) than two comparison conditions. The revised hints however, did not improve on the existing hints in the AI tutor, which were carefully-written but still have room for improvement and customization. Further analysis revealed that the main challenge for crowdworkers may lie in understanding teachers' brief written comments and implementing them in the form of effective edits, without introducing new problems. We also found that teachers preferred their own revisions over other sources of hints, and exhibited varying preferences for hints. Overall, the results confirm that there is a clear need for customizing hints to individual teachers' preferences. They also highlight the need for more elaborate scaffolds so the crowd can have specific knowledge of the requirements that teachers have for hints. The study represents a first exploration in the literature of how to support crowds with minimal expert guidance in revising and customizing instructional materials. 
    more » « less
  4. Abstract

    Traces from single-molecule fluorescence microscopy (SMFM) experiments exhibit photophysical artifacts that typically necessitate human expert screening, which is time-consuming and introduces potential for user-dependent expectation bias. Here, we use deep learning to develop a rapid, automatic SMFM trace selector, termed AutoSiM, that improves the sensitivity and specificity of an assay for a DNA point mutation based on single-molecule recognition through equilibrium Poisson sampling (SiMREPS). The improved performance of AutoSiM is based on accepting both more true positives and fewer false positives than the conventional approach of hidden Markov modeling (HMM) followed by hard thresholding. As a second application, the selector is used for automated screening of single-molecule Förster resonance energy transfer (smFRET) data to identify high-quality traces for further analysis, and achieves ~90% concordance with manual selection while requiring less processing time. Finally, we show that AutoSiM can be adapted readily to novel datasets, requiring only modest Transfer Learning.

     
    more » « less
  5. Identifying people in photographs is an important task in many fields, including history, journalism, genealogy, and collecting, but accurate person identification remains challenging. Researchers especially struggle with the “last-mile problem” of historical person identification, where they must make a selection among a small number of highly similar candidates. We present SleuthTalk, a web-based collaboration tool integrated into the public website Civil War Photo Sleuth which addresses the last-mile problem in historical person identification by providing support for shortlisting potential candidates from face recognition results, private collaborative workspaces, and structured feedback. 
    more » « less