skip to main content


Title: Wintertime Easterly and Southeasterly Airflow in the ‘Alenuihāhā Channel, Hawaii

During the wintertime, easterly (E) to southeasterly (SE) flow in the Hawaiian coastal waters is frequent. These wind regimes alter the location and magnitude of channel and tip jet accelerations and the orientation and horizontal extent of the wake zones from east-northeast (ENE) trade wind conditions. The differences are the result of changes in orographic blocking by the Big Island and Maui, with respect to the prevailing wind. During an E wind event, the fastest winds over the ‘Alenuihāhā Channel (>9 m s−1) occur in the channel exit with sinking of the inversion, which rises again downstream. Although the upstream wind speed is similar to typical summer ENE trade winds (7–8 m s−1), the maximum channel wind speed is 3–4 m s−1slower in the exit. The SE flow is characterized by maximum (~6 m s−1) northeasterly (NE) channel winds along Maui’s south shore and at the channel exit. These winds are the result of orographic blocking on the eastern end of Maui as the northwestern tail of a tip jet off the northeastern coast of the Big Island impinges on Mount Haleakalā. Channel wind speeds are modulated by the speed and direction of this tip jet, which itself varies diurnally and throughout the approach of a midlatitude cold front. Removal of the Big Island shows how the tip jet speed and orientation modulate the pressure gradients and winds in the ‘Alenuihāhā Channel. Removal of the Maui County terrain reveals the impact of orographic blocking on the occurrence of channel winds off Maui’s south shore.

 
more » « less
NSF-PAR ID:
10139554
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Monthly Weather Review
Volume:
148
Issue:
4
ISSN:
0027-0644
Page Range / eLocation ID:
p. 1337-1362
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Strong and sustained winds can drive dramatic hydrodynamic responses in density‐stratified lakes, with the associated transport and mixing impacting water quality, ecosystem function, and the stratification itself. Analytical expressions offer insight into the dynamics of stratified lakes during severe wind events. However, it can be difficult to predict the aggregate response of a natural system to the superposition of hydrodynamic phenomena in the presence of complex bathymetry and when forced by variable wind patterns. Using an array of current, temperature, and water quality measurements at the upwind shore, we detail the hydrodynamic response of deep, rotationally influenced Lake Tahoe to three strong wind events during late spring. Sustained southwesterly winds in excess of 10 m s−1drove upwelling at the upwind shore (characteristic of non‐rotational upwelling setup), with upward excursions of deep water exceeding 70 m for the strongest event. Hypolimnetic water, with elevated concentrations of chlorophyllaand nitrate, was advected toward the nearshore, but this water rapidly returned to depth with the relaxation of upwelling after the winds subsided. The relaxation of upwelling exhibited rotational influence, highlighted by an along‐shore, cyclonic front characteristic of a Kelvin wave‐driven coastal jet, with velocities exceeding 25 cm s−1. The rotational front also produced downwelling to 100 m, transporting dissolved oxygen to depth. More complex internal wave features followed the passage of these powerful internal waves. Results emphasize the complexity of these superimposed hydrodynamic phenomena in natural systems, providing a conceptual reference for the role upwelling events may play in lake ecosystems.

     
    more » « less
  2. null (Ed.)
    Abstract In the context of forecasting societally impactful Great Plains low-level jets (GPLLJs), the potential added value of satellite soil moisture (SM) data assimilation (DA) is high. GPLLJs are both sensitive to regional soil moisture gradients and frequent drivers of severe weather, including mesoscale convective systems. An untested hypothesis is that SM DA is more effective in forecasts of weakly synoptically forced, or uncoupled GPLLJs, than in forecasts of cyclone-induced coupled GPLLJs. Using the NASA Unified Weather Research and Forecasting (NU-WRF) Model, 75 GPLLJs are simulated at 9-km resolution both with and without NASA Soil Moisture Active Passive SM DA. Differences in modeled SM, surface sensible (SH) and latent heat (LH) fluxes, 2-m temperature (T2), 2-m humidity (Q2), PBL height (PBLH), and 850-hPa wind speed (W850) are quantified for individual jets and jet-type event subsets over the south-central Great Plains, as well as separately for each GPLLJ sector (entrance, core, and exit). At the GPLLJ core, DA-related changes of up to 5.4 kg m −2 in SM can result in T2, Q2, LH, SH, PBLH, and W850 differences of 0.68°C, 0.71 g kg −2 , 59.9 W m −2 , 52.4 W m −2 , 240 m, and 4 m s −1 , respectively. W850 differences focus along the jet axis and tend to increase from south to north. Jet-type differences are most evident at the GPLLJ exit where DA increases and decreases W850 in uncoupled and coupled GPLLJs, respectively. Data assimilation marginally reduces negative wind speed bias for all jets, but the correction is greater for uncoupled GPLLJs, as hypothesized. 
    more » « less
  3. Abstract

    A new Cloud Imaging and Particle Size (CIPS) gravity wave (GW) variance data set is available that facilitates automated analysis of GWs entering the mesosphere. This work examines several years of CIPS GW variances from 50 to 55 km in the context of the Arctic and Antarctic polar vortices. CIPS observes highest GW activity in the vortex edge region where horizontal wind speeds are largest, consistent with previously published GW climatologies in the stratosphere and mesosphere. CIPS observes the well‐documented planetary wave (PW)‐1 patterns in GW activity in both hemispheres. In the Northern Hemisphere, maximum GW activity occurs over the North Atlantic and western Europe. In the Southern Hemisphere, maximum GW activity stretches from the Andes over the South Atlantic and Indian Oceans, as expected. In the NH, CIPS GW spatial patterns are highly correlated with horizontal wind speed. In the SH, CIPS GW patterns are less positively correlated with the winds due to increased zonal symmetry and orographic forcing. The Andes Mountains and Antarctic Peninsula, South Georgia Island, Kerguelen/Heard Islands, New Zealand, and Tasmania are persistent sources of orographic GWs. Atmospheric Infrared sounder observations of stratospheric GWs are analyzed alongside CIPS to explore vertical GW coherence and to infer GW propagation and sources. NH midlatitude GW activity is reduced during the January 2021 SSW, as expected. This reduction in GWs leads to a simultaneous reduction in traveling ionospheric disturbances (TIDs), providing more evidence that weak polar vortex events with weak GW activity leads to reduced daytime TID activity.

     
    more » « less
  4. Abstract

    At the University of Michigan Biological Station during the 2016 AMOS field campaign, isoprene concentrations typically peak in the early afternoon (around 15:00 local time, LT) under well‐mixed conditions. However, an end‐of‐day peak (around 21:00 LT) occurs on 23% of the campaign days, followed by a rapid removal (from 21:00–22:00 LT) at rate of 0.57 hr−1during the day‐to‐night transition period. During the end‐of‐day peak, in‐canopy isoprene concentrations increase by 77% (from 3.5 to 6.2 ppbv) on average. Stratification and weak winds (<3.4 m s−1at 46 m) significantly suppress turbulent exchanges between in‐ and above‐canopy, leading to accumulation of isoprene emitted at dusk. A critical standard deviation of the vertical velocity (σw) of 0.14, 0.2, and 0.29 m s−1is identified to detect the end‐of‐day peak for the height of 13, 21, and 34 m, respectively. In 85% of the end‐of‐day cases, the wind speed increases above 2.5 m s−1after the peak along with a shift in wind direction, and turbulence is reestablished. Therefore, the wind speed of 2.5 m s−1is considered as the threshold point where turbulence switches from being independent of wind speed to dependent on wind speed. The reinstated turbulence accounts for 80% of the subsequent isoprene removal with the remaining 20% explained by chemical reactions with hydroxyl radicals, ozone, and nitrate radicals. Observed isoprene fluxes do not support the argument that the end‐of‐day peak is reduced by vertical turbulent mixing, and we hypothesize that horizontal advection may play a role.

     
    more » « less
  5. Abstract

    The continental shelf of the West Antarctic Peninsula (WAP) is characterized by strong along‐shore hydrographic gradients resulting from the distinct influences of the warm Bellingshausen Sea to the south and the cold Weddell Sea water flooding Bransfield Strait to the north. These gradients modulate the spatial structure of glacier retreat and are correlated with other physical and biochemical variability along the shelf, but their structure and dynamics remain poorly understood. Here, the magnitude, spatial structure, seasonal‐to‐interannual variability, and driving mechanisms of along‐shore exchange are investigated using the output of a high‐resolution numerical model and with hydrographic data collected in Palmer Deep. The analyses reveal a pronounced seasonal cycle of along‐shore transport, with a net flux (7.0 × 105 m3/s) of cold water toward the central WAP (cWAP) in winter, which reverses in summer with a net flow (5.2 × 105 m3/s) of Circumpolar Deep Water (CDW) and modified CDW (mCDW) toward Bransfield Strait. Significant interannual variability is found as the pathway of a coastal current transporting Weddell‐sourced water along the WAP shelf is modulated by wind forcing. When the Southern Annual Mode (SAM) is positive during winter, stronger upwelling‐favorable winds dominate in Bransfield Strait, leading to offshore advection of the Weddell‐sourced water. Negative SAM leads to weaker upwelling‐ or downwelling‐favorable winds and enhanced flooding of the cWAP with cold water from Bransfield Strait. This process can result in significant (0.5°C below 200 m) cooling of the continental shelf around Palmer Station, highlighting that along‐shore exchange is critical in modulating the hydrographic properties along the WAP.

     
    more » « less