skip to main content


Title: Decadal and Episodic Changes in Morphology and Migration of the Confluence Bar of Two Alluvial Rivers in Louisiana, USA
Abstract

Past research on fluvial dynamics at the confluence of two alluvial rivers has mainly focused on downstream flow structure and bed scoring, often using laboratory experiments and numerical modeling. Little is investigated about yearly and episodic dynamics of confluence mouth bars that can affect downstream morphology using field measurements. In this study, we analyzed the migration of a confluence mouth bar of two free meandering alluvial rivers, the Amite and Comite Rivers in coastal Louisiana, USA from 2002 to 2017. Remote sensing images were utilized to investigate the decade‐long morphologic changes. To assess episodic dynamics, we employed terrestrial laser scanning measurements to acquire high‐accuracy digital elevation models at the confluence before and after three floods in 2017. Our study found that the Amite‐Comite confluence mouth bar migrated downstream 55 m in the past 15 years, and its angle reduced by 55° from 100° to 45°. The fast migration was a result of sediment deposition and channel deformation around the confluence mainly during the years when the tributary‐to‐main channel discharge was lower (<0.25). The study further reveals that a single moderate flood could strongly affect the mouth bar, as shown by an increase of the projected surface area by 114% and an increase of volume of the confluence mouth bar by 68%.

 
more » « less
NSF-PAR ID:
10139689
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
JAWRA Journal of the American Water Resources Association
Volume:
56
Issue:
4
ISSN:
1093-474X
Page Range / eLocation ID:
p. 615-629
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Bed material transport at river bifurcations is crucial for channel stability and downstream geomorphic dynamics. However, measurements of bed material transport at bifurcations of large alluvial rivers are difficult to make, and standard estimates based on the assumption of proportional partitioning of flow and bedload transport at bifurcations may be erroneous. In this study, we employed a combined approach based on observed topographic change (erosion/deposition) and bed material transport predicted from a one‐dimensional model to investigate bed material fluxes near the engineering‐controlled Mississippi‐Atchafalaya River diversion, which is of great importance to sediment distribution and delivery to Louisiana's coast. Yang's (1973) sediment transport equation was utilized to estimate daily bed material loads upstream, downstream, and through the diversion during 2004–2013. Bathymetric changes in these channels were assessed with single beam data collected in 2004 and 2013. Results show that over the study period, 24% of the Mississippi River flow was diverted into the Atchafalaya River, while the rest remained in the mainstem Mississippi. Upstream of the diversion, the bed material yield was predicted to be 201 million metric tons (MT), of which approximately 35 MT (i.e., 17%) passed through the bifurcation channel to the Atchafalaya River. The findings from this study reveal that in the mainstem Mississippi, the percentage of bed material diversion (83%) is larger than the percentage of flow diversion (76%); Conversely, the diversion channel receives a disproportionate amount of flow (24%) relative to bed material supply (17%). Consequently, severe bed scouring occurred in the controlled Outflow Channel to the Atchafalaya River, while riverbed aggradation progressed in the mainstem Mississippi downstream of the diversion structures, implying reduced flow capacity and potential risk of a high backwater during megafloods. The study demonstrates that Yang's sediment transport equation provides plausible results of bed material fluxes for a highly complicated large river diversion, and that integration of the sediment transport equation with observed morphological changes in riverbed is a valuable approach to investigate sediment dynamics at controlled river bifurcations.

     
    more » « less
  2. Abstract

    The size and geometry of river channels play a central role in sediment transport and the character of deposition within alluvial basins across spatiotemporal scales spanning the initiation of grain movement to the filling of accommodation generated by subsidence. This study compares several different approaches to estimating palaeoflow depths from fluvial deposits in the early Palaeogene Willwood Formation of north‐west Wyoming, USA. Fluvial story heights (n = 60) and mud plug thicknesses (n = 13) are statistically indistinguishable from one another and yield palaeoflow depth estimates of 4 to 6 m. The vertical relief on bar clinoforms (n = 112) yields smaller flow depths, by a factor ofca0.3, with the exception that the largest bar clinoforms match story heights and mud plug estimates. This observation is consistent with modern river data sets that indicate unit bar clinoforms do not capture the reach‐mean bank‐full flow depths except in rare circumstances. Future studies should use story heights (i.e. compound bar deposits) and mud plugs to estimate bank‐full flow depths in alluvial strata. Additionally, the thickness of multi‐storied fluvial sandbodies (n = 102) and overbank cycles composed of paired crevasse splay and palaeosol deposits (n = 45) were compared. The two depositional units display statistically indistinguishable mean and median values. Building upon previous depositional models, these observations suggest basin rivers aggraded approximately one flow depth prior to major avulsion. This avulsion process generated widespread crevasse splay deposition across the floodplain. Once the main river channel stem was reestablished, overbank flooding and palaeosol development dominated floodplain settings. The depositional model implies river aggradation autogenically generated topography in the basin that was effectively filled during the subsequent avulsion. This constitutes a meso‐timescale (103–104 years) compensational pattern driven by morphodynamics that may account for the high completeness of fossil and palaeoclimate records recovered from the basin.

     
    more » « less
  3. Abstract

    Across varied environments, meandering channels evolve through a common morphodynamic feedback: the sinuous channel shape causes spatial variations in boundary shear stress, which cause lateral migration rates to vary along a meander bend and change the shape of the channel. This feedback is embedded in all conceptual models of meandering channel migration, and in numerical models, it occurs over an explicit timescale (i.e., the model time step). However, the sensitivity of modeled channel trajectory to the time step is unknown. In numerical experiments using a curvature‐driven model of channel migration, we find that channel trajectories are consistent over time if the channel migrates ≤10% of the channel width over the feedback timescale. In contrast, channel trajectories diverge if the time step causes migration to exceed this threshold, due to the instability in the co‐evolution of channel curvature and migration rate. The divergence of channel trajectories accumulates with the total run time. Application to hindcasting of channel migration for 10 natural rivers from the continental US and the Amazon River basin shows that the sensitivity of modeled channel trajectories to the time step is greatest at low (near‐unity) channel sinuosity. A time step exceeding the criterion causes over‐prediction of the width of the channel belt developed over millennial timescales. These findings establish a geometric constraint for predicting channel migration in landscape evolution models for lowland alluvial rivers, upland channels coupled to hillslopes and submarine channels shaped by turbidity currents, over timescales from years to millennia.

     
    more » « less
  4. Incising rivers may be confined by low-slope, erodible hillslopes or steep, resistant sidewalls. In the latter case, the system forms a canyon. We present a morphodynamic model that includes the essential elements of a canyon incising into a plateau, including 1) abrasion-driven channel incision, 2) migration of a canyon-head knickpoint, 3) sediment feed from an alluvial channel upstream of the knickpoint, and 4) production of sediment by sidewall collapse. We calculate incision in terms of collision of clasts with the bed. We calculate knickpoint migration using a moving-boundary formulation that allows a slope discontinuity where the channel head meets an alluvial plateau feeder channel. Rather than modeling sidewall collapse events, we model long-term behavior using a constant sidewall slope as the channel incises. Our morphodynamic model specifically applies to canyon, rather than river–hillslope evolution. We implement it for Rainbow Canyon, CA. Salient results are as follows: 1) Sediment supply from collapsing canyon sidewalls can be substantially larger than that supplied from the feeder channel on the plateau. 2) For any given quasi-equilibrium canyon bedrock slope, two conjugate slopes are possible for the alluvial channel upstream, with the lower of the two corresponding to a substantially lower knickpoint migration rate and higher preservation potential. 3) Knickpoint migration occurs at a substantially faster time scale than regrading of the bedrock channel itself, underlying the significance of disequilibrium processes. Although implemented for constant climactic conditions, the model warrants extension to long-term climate variation.

     
    more » « less
  5. Abstract

    Understanding channel migration is essential in interpreting long‐term evolution of fluvial systems and their deposits. Using data from an experimental delta, we analyzed the kinematics of the upstream channel and assessed the relative dominance of continuous lateral channel migration versus abrupt changes (i.e., avulsions). Detailed investigation of channel centerline location at minute intervals reveals a short‐term correlation between the magnitude of migration rates measured at the same location and a spatial correlation that diminishes with distance between points. The main finding is that the channel migrates across the entire deltaic domain without large and abrupt lateral shifts but through continuous lateral migration at variable rates. Long periods of back and forth small moves are separated by short bursts of rapid lateral migration. This finding contradicts the default expectation that that aggrading systems are characterized by avulsions and suggests that highly mobile rivers tend to avulse less. We contrast this with another experiment conducted under similar conditions but with finer sediment supplied at a lower rate which shows drastically less lateral migration; the kinematics is instead dominated by periodic flow reconfiguration episodes akin to avulsions, an indication that channel migration‐style depends on the sediment load. The characteristics of these two experiments parallel two regions of the Mississippi River, the meandering and highly mobile alluvial plain and the less dynamic deltaic region, suggesting that bedload sediment deposition at the transition into backwater zone plays an important role in re‐shaping the river planform and migration style.

     
    more » « less