skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CO 2 reduction with protons and electrons at a boron-based reaction center
Borohydrides are widely used reducing agents in chemical synthesis and have emerging energy applications as hydrogen storage materials and reagents for the reduction of CO 2 . Unfortunately, the high energy cost associated with the multistep preparation of borohydrides starting from alkali metals precludes large scale implementation of these latter uses. One potential solution to this issue is the direct synthesis of borohydrides from the protonation of reduced boron compounds. We herein report reactions of the redox series [Au(B 2 P 2 )] n ( n = +1, 0, −1) (B 2 P 2 , 9,10-bis(2-(diisopropylphosphino)phenyl)-9,10-dihydroboranthrene) and their conversion into corresponding mono- and diborohydride complexes. Crucially, the monoborohydride can be accessed via protonation of [Au(B 2 P 2 )] − , a masked borane dianion equivalent accessible at relatively mild potentials (−2.05 V vs. Fc/Fc + ). This species reduces CO 2 to produce the corresponding formate complex. Cleavage of the formate complex can be achieved by reduction ( ca. −1.7 V vs. Fc/Fc + ) or by the addition of electrophiles including H + . Additionally, direct reaction of [Au(B 2 P 2 )] − with CO 2 results in reductive disproportion to release CO and generate a carbonate complex. Together, these reactions constitute a synthetic cycle for CO 2 reduction at a boron-based reaction center that proceeds through a B–H unit generated via protonation of a reduced borane with weak organic acids.  more » « less
Award ID(s):
1752876
PAR ID:
10139731
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
10
Issue:
39
ISSN:
2041-6520
Page Range / eLocation ID:
9084 to 9090
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The water reactivity of the boroauride complex ([Au(B 2 P 2 )][K(18-c-6)]; (B 2 P 2 , 9,10-bis(2-(diisopropylphosphino)-phenyl)-9,10-dihydroboranthrene) and its corresponding two-electron oxidized complex, Au(B 2 P 2 )Cl, are presented. Au(B 2 P 2 )Cl is tolerant to H 2 O and forms the hydroxide complex Au(B 2 P 2 )OH in the presence of H 2 O and triethylamine. [Au(B 2 P 2 )]Cl and [Au(B 2 P 2 )]OH are poor Lewis acids as judged by the Gutmann–Becket method, with [Au(B 2 P 2 )]OH displaying facile hydroxide exchange between B atoms of the DBA ring as evidenced by variable temperature NMR spectroscopy. The reduced boroauride complex [Au(B 2 P 2 )] − reacts with 1 equivalent of H 2 O to produce a hydride/hydroxide product, [Au(B 2 P 2 )(H)(OH)] − , that rapidly evolves H 2 upon further H 2 O reaction to yield the dihydroxide compound, [Au(B 2 P 2 )(OH) 2 ] − . [Au(B 2 P 2 )]Cl can be regenerated from [Au(B 2 P 2 )(OH) 2 ] − via HCl·Et 2 O, providing a synthetic cycle for H 2 evolution from H 2 O enabled by O–H oxidative addition at a diboraanthracene unit. 
    more » « less
  2. The boron-centered reactivity of the diboraanthracene-auride complex ([Au(B2P2)][K(18-c-6)]; (B2P2, 9,10-bis(2-(diisopropylphosphino)- phenyl)-9,10-dihydroboranthrene) with a series of organic carbonyls is reported. The reaction of [(B2P2)Au]– with formaldehyde or paraformaldehyde results in a head-to-tail dimerization of two formaldehyde units across the boron centers. In contrast, the reaction of [(B2P2)Au]– with two equivalents of benzaldehyde yields the pinacol coupling product via C–C bond formation. Careful stoichiometric addition of one equivalent of benzaldehyde to [Au(B2P2)]– enabled the isolation of an adduct corresponding to the formal [4+2] cycloaddition of the C=O bond of benzaldehyde across the boron centers. This adduct reacts with a second equivalent of benzaldehyde to produce the pinacol coupling product. Finally, the reaction of [Au(B2P2)]– with acetone results in a formal reductive deoxygenation with discrete hydroxo and 2-propenyl units bound to the boron centers. This reaction is proposed to proceed via an analogous [4+2] cycloadduct, highlighting the unique small molecule activation chemistry available to this platform. 
    more » « less
  3. Abstract Electrocatalytic proton reduction to form dihydrogen (H2) is an effective way to store energy in the form of chemical bonds. In this study, we validate the applicability of a main‐group‐element‐based tin porphyrin complex as an effective molecular electrocatalyst for proton reduction. A PEGylated Sn porphyrin complex (SnPEGP) displayed high activity (−4.6 mA cm−2at −1.7 V vs. Fc/Fc+) and high selectivity (H2Faradaic efficiency of 94 % at −1.7 V vs. Fc/Fc+) in acetonitrile (MeCN) with trifluoroacetic acid (TFA) as the proton source. The maximum turnover frequency (TOFmax) for H2production was obtained as 1099 s−1. Spectroelectrochemical analysis, in conjunction with quantum chemical calculations, suggest that proton reduction occurs via an electron‐chemical‐electron‐chemical (ECEC) pathway. This study reveals that the tin porphyrin catalyst serves as a novel platform for investigating molecular electrocatalytic reactions and provides new mechanistic insights into proton reduction. 
    more » « less
  4. null (Ed.)
    All life on Earth is built of organic molecules, so the primordial sources of reduced carbon remain a major open question in studies of the origin of life. A variant of the alkaline-hydrothermal-vent theory for life’s emergence suggests that organics could have been produced by the reduction of CO 2 via H 2 oxidation, facilitated by geologically sustained pH gradients. The process would be an abiotic analog—and proposed evolutionary predecessor—of the Wood–Ljungdahl acetyl-CoA pathway of modern archaea and bacteria. The first energetic bottleneck of the pathway involves the endergonic reduction of CO 2 with H 2 to formate (HCOO – ), which has proven elusive in mild abiotic settings. Here we show the reduction of CO 2 with H 2 at room temperature under moderate pressures (1.5 bar), driven by microfluidic pH gradients across inorganic Fe(Ni)S precipitates. Isotopic labeling with 13 C confirmed formate production. Separately, deuterium ( 2 H) labeling indicated that electron transfer to CO 2 does not occur via direct hydrogenation with H 2 but instead, freshly deposited Fe(Ni)S precipitates appear to facilitate electron transfer in an electrochemical-cell mechanism with two distinct half-reactions. Decreasing the pH gradient significantly, removing H 2 , or eliminating the precipitate yielded no detectable product. Our work demonstrates the feasibility of spatially separated yet electrically coupled geochemical reactions as drivers of otherwise endergonic processes. Beyond corroborating the ability of early-Earth alkaline hydrothermal systems to couple carbon reduction to hydrogen oxidation through biologically relevant mechanisms, these results may also be of significance for industrial and environmental applications, where other redox reactions could be facilitated using similarly mild approaches. 
    more » « less
  5. Abstract The conversion of waste CO2to value‐added chemicals through electrochemical reduction is a promising technology for mitigating climate change while simultaneously providing economic opportunities. The use of non‐aqueous solvents like methanol allows for higher CO2availability and novel products. In this work, the electrochemistry of CO2reduction in acidic methanol catholyte at a Pb working electrode was investigated while using a separate aqueous anolyte to promote a sustainable water oxidation half‐reaction. The selectivity among methyl formate (a product unique to reduction of CO2in methanol), formic acid, and formate was critically dependent on the catholyte pH, with higher pH conditions leading to formate and low pH favoring methyl formate. The potential dependence of the product distribution in acidic catholyte was also investigated, with a faradaic efficiency for methyl formate as high as 75 % measured at −2.0 V vs. Ag/AgCl. 
    more » « less