Abstract Seagrass meadows play an important role in “blue carbon” sequestration and storage, but their dynamic metabolism is not fully understood. In a denseZostera marinameadow, we measured benthic O2fluxes by aquatic eddy covariance, water column concentrations of O2, and partial pressures of CO2(pCO2) over 21 full days during peak growing season in April and June. Seagrass metabolism, derived from the O2flux, varied markedly between the 2 months as biomass accumulated and water temperature increased from 16°C to 28°C, triggering a twofold increase in respiration and a trophic shift of the seagrass meadow from being a carbon sink to a carbon source. Seagrass metabolism was the major driver of diurnal fluctuations in water column O2concentration and pCO2, ranging from 173 to 377 μmol L−1and 193 to 859 ppmv, respectively. This 4.5‐fold variation in pCO2was observed despite buffering by the carbonate system. Hysteresis in diurnal water column pCO2vs. O2concentration was attributed to storage of O2and CO2in seagrass tissue, air–water exchange of O2and CO2, and CO2storage in surface sediment. There was a ~ 1:1 mol‐to‐mol stoichiometric relationship between diurnal fluctuations in concentrations of O2and dissolved inorganic carbon. Our measurements showed no stimulation of photosynthesis at high CO2and low O2concentrations, even though CO2reached levels used in IPCC ocean acidification scenarios. This field study does not support the notion that seagrass meadows may be “winners” in future oceans with elevated CO2concentrations and more frequent temperature extremes.
more »
« less
A zinc-based oxysulfide photocatalyst SrZn 2 S 2 O capable of reducing and oxidizing water
Although Zn-based binary semiconductors such as ZnO and ZnS are photocatalytically unstable toward water oxidation, we found that mixed-anionization successfully addressed this issue. This report shows that an oxysulfide SrZn 2 S 2 O functions as a photocatalyst to reduce and oxidize water under band-gap irradiation without noticeable decomposition of the material.
more »
« less
- Award ID(s):
- 1806279
- PAR ID:
- 10140042
- Date Published:
- Journal Name:
- Dalton Transactions
- Volume:
- 48
- Issue:
- 42
- ISSN:
- 1477-9226
- Page Range / eLocation ID:
- 15778 to 15781
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A crucial step toward clean hydrogen (H2) energy production through water electrolysis is to develop high‐stability catalysts, which can be reliably used at high current densities for a long time. So far, platinum group metals (PGM) and their oxides, for example, Pt and iridium oxide (IrO2) have been well‐regarded as the criterion for hydrogen and oxygen evolution reactions (HER and OER) electrocatalysts. However, the PGM catalysts usually undergo severe performance decay during the long‐term operation. Herein, the in situ growth of iron phosphosulfate (Fe2P2S6) nanocrystals (NCs) catalysts on carbon paper synthesized by combing chemical vapor deposition with solvent‐thermal treatment is reported to show competitive performance and stability as compared to the state‐of‐the‐art PGM catalysts in a real water electrolyzer. A current density of 370 mA cm−2is achieved at 1.8 V when using Fe2P2S6NCs as bifunctional catalysts in an anion exchange membrane water electrolyzer. The Fe2P2S6NCs also show much better stability than the Pt‐IrO2catalysts at 300 mA cm−2for a continuous 24 h test. The surface generated FeOOH on Fe2P2S6is the real active site for OER. These results indicate that the Fe2P2S6NCs potentially can be used to replace PGM catalysts for practical water electrolyzers.more » « less
-
Abstract Based on the coincident onsets of oxygen evolution reaction (OER) and metal dissolution for many metal‐oxide catalysts it was suggested that OER triggers dissolution. It is believed that both processes share common intermediates, yet exact mechanistic details remain largely unknown. For example, there is still no clear understanding as to why rutile IrO2exhibits such an exquisite stability among water‐splitting electrocatalysts. Here, we employ density functional theory calculations to analyze interactions between water and the (110) surface of rutile RuO2and IrO2as a response to oxygen evolution involving lattice oxygen species. We observe that these oxides display qualitatively different interfacial behavior that should have important implications for their electrochemical stability. Specifically, it is found that IrO2(110) becomes further stabilized under OER conditions due to the tendency to form highly stable low oxidation state Ir(III) species. In contrast, Ru species at RuO2(110) are prone to facile reoxidation by solution water. This should facilitate the formation of high Ru oxidation state intermediates (>IV) accelerating surface restructuring and metal dissolution.more » « less
-
Despite the interest in sulfur monoxide (SO) among astrochemists, spectroscopists, inorganic chemists, and organic chemists, its interaction with water remains largely unexplored. We report the first high level theoretical geometries for the two minimum energy complexes formed by sulfur monoxide and water, and we report energies using basis sets as large as aug-cc-pV(Q+d)Z and correlation effects through perturbative quadruple excitations. One structure of SO⋯H 2 O is hydrogen bonded and the other chalcogen bonded. The hydrogen bonded complex has an electronic energy of −2.71 kcal mol −1 and a zero kelvin enthalpy of −1.67 kcal mol −1 , while the chalcogen bonded complex has an electronic energy of −2.64 kcal mol −1 and a zero kelvin enthalpy of −2.00 kcal mol −1 . We also report the transition state between the two structures, which lies below the SO⋯H 2 O dissociation limit, with an electronic energy of −1.26 kcal mol −1 and an enthalpy of −0.81 kcal mol −1 . These features are much sharper than for the isovalent complex of O 2 and H 2 O, which only possesses one weakly bound minimum, so we further analyze the structures with open-shell SAPT0. We find that the interactions between O 2 and H 2 O are uniformly weak, but the SO⋯H 2 O complex surface is governed by the superior polarity and polarizability of SO, as well as the diffuse electron density provided by sulfur's extra valence shell.more » « less
-
Photoelectrochemical (PEC) hydrogen generation is a promising solar energy harvesting technique to address the concerns about the ongoing energy crisis. Antimony selenide (Sb2Se3) with van der Waals‐bonded quasi‐1D (Q1D) nanoribbons, for instance, (Sb4Se6)n, has attracted considerable interest as a light absorber with Earth‐abundant elements, suitable bandgap, and a desired sunlight absorption coefficient. By tuning its anisotropic growth behavior, it is possible to achieve Sb2Se3films with nanostructured morphologies that can improve the light absorption and photogenerated charge carrier separation, eventually boosting the PEC water‐splitting performance. Herein, high‐quality Sb2Se3films with nanorod (NR) array surface morphologies are synthesized by a low‐cost, high‐yield, and scalable close‐spaced sublimation technique. By sputtering a nonprecious and scalable crystalline molybdenum sulfide (MoS2) film as a cocatalyst and a protective layer on Sb2Se3NR arrays, the fabricated core–shell structured MoS2/Sb2Se3NR PEC devices can achieve a photocurrent density as high as −10 mA cm−2at 0 VRHEin a buffered near‐neutral solution (pH 6.5) under a standard simulated air mass 1.5 solar illumination. The scalable manufacturing of nanostructured MoS2/Sb2Se3NR array thin‐film photocathode electrodes for efficient PEC water splitting to generate solar fuel is demonstrated.more » « less
An official website of the United States government

