skip to main content


Title: Evolution of the Josephine Peridotite Shear Zones: 1. Compositional Variation and Shear Initiation
Abstract

Shear localization in the upper mantle, a necessity for plate tectonics, can have a number of causes, including shear heating, the presence of melt, the development of a strong crystal preferred orientation, and the presence of water. The Josephine Peridotite of southwestern Oregon contains shear zones that provide an excellent opportunity to examine the initiation of shear localization. These shear zones are relatively small scale and low strain compared to many shear zones in peridotite massifs, which typically have extreme grain size reduction indicating extensive deformation. We use major, trace, and volatile element analyses of a large suite of harzburgites from the Fresno Bench shear zones to evaluate the mechanisms leading to shear localization. Lithological evidence and geochemical transects across three shear zones show a complex history of melting, melt addition, and melt‐rock interaction. The distribution of aluminum and heavy rare earth elements across the shear zones suggest that melt flow was focused in the centers of the studied shear zones. Water concentrations in orthopyroxene grains of 180–334 ppm H2O indicate a comparatively high degree of hydration for nominally anhydrous minerals. The correlation of water with aluminum and ytterbium in orthopyroxene is consistent with a melt source for this hydration, suggesting that water equilibrated between the melt and peridotite. The presence of melt and hydration of the host rock provide mechanisms for initial weakening that lead to localized deformation.

 
more » « less
Award ID(s):
1806791 1625032 1255620
NSF-PAR ID:
10456073
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
20
Issue:
12
ISSN:
1525-2027
Page Range / eLocation ID:
p. 5765-5785
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present constraints on the hydration state and rheology of the lithospheric mantle beneath the North Anatolian fault zone (NAFZ). Peridotite xenoliths from the Biyikali and Çorlu volcanic centers record deformational microstructures consistent with shearing in a lithosphere‐scale transcurrent fault system. Analysis by Fourier transform infrared spectroscopy indicates that nominally anhydrous phases retain some OH, but bulk rock concentrations are generally restricted to <50 ppm H2O by weight. From the rock microstructure, we determined differential stress magnitude and active deformation mechanism(s); combined with estimates of hydration state, we constrained the rheology. Recrystallized grain size piezometry shows that the mantle beneath the NAFZ sustained differential stresses of 10–20 MPa, largely independent of depth. The dominant deformation mechanism(s) change with depth; xenoliths extracted from shallower depths record evidence for grain size‐sensitive creep possibly in the presence of melt. At intermediate depths, both dislocation creep and grain size‐sensitive mechanisms were active, and we did not observe evidence for deformation in the presence of melt. The deepest samples were dominated by dislocation creep. The strong temperature sensitivity of creep mechanisms, combined with the low variability in differential stress, contributes to a stratified viscosity profile ranging from 1018 Pa s for the deepest samples to >1022 Pa s at shallower depths (assuming a melt‐free rheology). Although difficult to quantify from the rock record, melt likely reduced the viscosity of the shallow lithospheric mantle. Vertical stratification in viscosity beneath the NAFZ, the result of melt‐present deformation and/or transitions in the dominant deformation mechanism, has important consequences for the seismic cycle of strike‐slip fault systems.

     
    more » « less
  2. Over 500 km2 of rock exposure in Fiordland, New Zealand records strain localization processes accompanying the formation of a steep, transpressional shear zone within the root of a Cretaceous continental magmatic arc. Here, we pair field observations with microstructural and petrographic analyses of the George Sound shear zone (GSSZ) to investigate how metamorphism and compositional variability influenced shear zone evolution in the lower continental crust. The northern portion of the 50 km-long GSSZ deforms a monzodioritic pluton where superposed mineral fabrics record a narrowing of the shear zone width over time. Early stage deformation was accommodated mostly by dynamic recrystallization of pyroxene and plagioclase, forming a steep zone of coarse, gneissic foliations over 10 km wide. Subsequent deformation created a 2 km-thick zone of mylonite containing fine-grained plagioclase, hornblende, biotite, and quartz. The latter three minerals formed during the hydration of older minerals, including igneous pyroxene. The change in mineralogy and grain size also produced thin (< 1 mm), weak layers that localized deformation in shear bands in the highest strain zones. The southern ~35 km of the GSSZ deforms a heterogeneous section of granite, diorite, and metasedimentary rock. In this area, the hydration of igneous assemblages also is pervasive but is not restricted to high-strain zones. Instead, the shear zone branches into four ≤1 km-wide strands that closely follow lithologic contacts. The thinnest branch occurs at the contact of a coarse-grained, dioritic pluton and a fine-grained granitic pluton. These patterns suggest that the factors that controlled strain localization in the GSSZ vary along its length. In the north, where its host rock is homogeneous, retrograde metamorphism helped localized strain into shear bands at the micro scale, mirroring a narrowing at the km scale. In the south, lithologic contacts created weak zones that appear to have superseded the effects of metamorphism, creating a series of thin, branching high-strain zones. These results suggest that the rheology of lower-crustal shear zones also varies significantly along their length and over time. Both of these factors can be used to generate improved models of continental deformation. 
    more » « less
  3. Abstract

    Fluids can play an important role in the localization of deformation in the deep crust, yet the specific mechanisms active during the complex interactions between metasomatism, metamorphism and deformation remain elusive. Precambrian metagabbronorite dykes in southwest Montana contain fractures filled with Hbl±Grt and discrete cm‐scale shear zones with well‐preserved strain gradients. This system offers an ideal opportunity to constrain the chemical and mechanical processes that facilitated strain localization. An early M1assemblage of Grt1+Cpx1+Pl1+Qz developed at conditions of 0.51–0.85 GPa and 500–700°C and is preserved largely as a static replacement of relict igneous phases (Opx, Pgt, Pl) in coronitic textures. An M2assemblage characterized by Grt2+Pl2±Cpx2+Hbl+Scp+Qz developed at 0.86–1.00 GPa and 660–730°C coincided with fluid flow and deformation associated with shear zone development. Microstructural observations in marginal protomylonite/mylonite and laminated ultramylonite suggest a shear zone evolution that involved (1) nucleation from pre‐existing fractures that were sites for major fluid infiltration, (2) initial widening coincident with grain‐size reduction by microfracturing, dislocation creep, and synkinematic metamorphic reaction by solution transfer, and (3) a switch in the dominant deformation mechanisms active in the ultramylonite from grain‐size insensitive mechanisms to grain‐size sensitive granular flow accommodated by fluid‐assisted diffusion. Throughout this evolution, the effective bulk compositions of the rock volumes responding to metamorphism changed through a combination of mechanical and metasomatic processes.

     
    more » « less
  4. Abstract

    Amphibole is a common hydrous mineral in mantle rocks. To better understand processes leading to the formation of amphibole‐bearing peridotites and pyroxenites in the lithospheric mantle, we conducted experiments by juxtaposing a lherzolite against hydrous basaltic melts in Au‐Pd capsules. Two melts were examined, a basaltic andesite and a basalt, each containing 4 wt% of water. The experiments were run at 1200°C and 1 GPa for 3 or 12 h, and then cooled to 880°C and 0.8 GPa over 49 h. The reaction at 1200°C produced a melt‐bearing orthopyroxenite‐dunite sequence. Crystallization of the partially reacted melts during cooling lead to the formation of an amphibole‐bearing gabbronorite‐orthopyroxenite‐peridotite sequence. Orthopyroxene in the peridotite and orthopyroxenite has a poikilitic texture enclosing olivines and spinels. Amphibole in the peridotite occurs interstitial to olivine, orthopyroxene, clinopyroxene, and spinel. Comparisons of texture and mineral compositions in the experimental products with those from field observations allow a better understanding of hydrous melt‐rock reaction in the lithospheric mantle. Amphibole‐bearing pyroxenite veins (or dikes) can be formed in the lithospheric mantle or at the crust‐mantle boundary by interaction between hydrous melt and peridotite and subsequent crystallization. Hornblendite or amphibole gabbronorite can be formed in the veins when the flux of hydrous melt is high. Differences in reacting melt and peridotite compositions are responsible for the variation in amphibole composition in mantle xenoliths from different tectonic settings. The extent of melt‐rock reaction is a factor that control amphibole composition across the amphibole‐bearing vein and the host peridotite.

     
    more » « less
  5. Abstract

    Seismic anisotropy arises in the upper mantle due to the alignment of olivine crystal lattices and is often used to interpret mantle flow direction. Experiments on the evolution of olivine crystal‐preferred orientation (CPO) have found that the texture that develops is dependent on many factors, including water content, differential stress, preexisting CPO, and deformation kinematics. To evaluate the role of these factors in naturally deformed samples, we present microstructural transects across three shear zones in the Josephine Peridotite. Samples from these shear zones exhibit a mixture of A‐type textures, which have been associated with dry conditions and primary activation of the olivine [100](010) slip system, and of E‐type textures, which have been associated with wetter conditions and primary activation of the [100](001) slip system. CPOs with characteristics of both A‐type and E‐type textures are also present. CPO type does not evolve systematically as a function of either strain or water content. We used a micromechanical model to evaluate the roles of preexisting texture and kinematics on olivine CPO evolution. We find that the preexisting texture controls CPO evolution at strains up to 5 during simple shear. Kinematics involving a combination of simple shear and pure shear can explain the olivine CPOs at higher strain. Hence, preexisting CPOs and deformation kinematics should be considered in the interpretation of CPOs measured in naturally deformed rocks and of large‐scale patterns in upper‐mantle seismic anisotropy.

     
    more » « less