skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: GPU-DFC: A GPU-Based Parallel Algorithm for Computing Dynamic-Functional Connectivity of Big fMRI Data
Studying dynamic-functional connectivity (DFC) using fMRI data of the brain gives much richer information to neuroscientists than studying the brain as a static entity. Mining of dynamic connectivity graphs from these brain studies can be used to classify diseased versus healthy brains. However, constructing and mining dynamic-functional connectivity graphs of the brain can be time consuming due to size of fMRI data. In this paper, we propose a highly scalable GPU-based parallel algorithm called GPU-DFC for computing dynamic-functional connectivity of fMRI data both at region and voxel level. Our algorithm exploits sparsification of correlation matrix and stores them in CSR format. Further reduction in the correlation matrix is achieved by parallel decomposition techniques. Our GPU-DFC algorithm achieves 2 times speed-up for computing dynamic correlations compared to state-of-the-art GPU-based techniques and more than 40 times compared to a sequential CPU version. In terms of storage, our proposed matrix decomposition technique reduces the size of correlation matrices more than 100 times. Reconstructed values from decomposed matrices show comparable results as compared to the correlations with original data. The implemented code is available as GPL license on GitHub portal of our lab (https://github.com/pcdslab/GPU-DFC).  more » « less
Award ID(s):
1925960
PAR ID:
10140317
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of IEEE Fifth International Conference on Big Data Computing Service and Applications (BigDataService)
Page Range / eLocation ID:
114 to 121
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The auditory system comprises multiple subcortical brain structures that process and refine incoming acoustic signals along the primary auditory pathway. Due to technical limitations of imaging small structures deep inside the brain, most of our knowledge of the subcortical auditory system is based on research in animal models using invasive methodologies. Advances in ultrahigh-field functional magnetic resonance imaging (fMRI) acquisition have enabled novel noninvasive investigations of the human auditory subcortex, including fundamental features of auditory representation such as tonotopy and periodotopy. However, functional connectivity across subcortical networks is still underexplored in humans, with ongoing development of related methods. Traditionally, functional connectivity is estimated from fMRI data with full correlation matrices. However, partial correlations reveal the relationship between two regions after removing the effects of all other regions, reflecting more direct connectivity. Partial correlation analysis is particularly promising in the ascending auditory system, where sensory information is passed in an obligatory manner, from nucleus to nucleus up the primary auditory pathway, providing redundant but also increasingly abstract representations of auditory stimuli. While most existing methods for learning conditional dependency structures based on partial correlations assume independently and identically Gaussian distributed data, fMRI data exhibit significant deviations from Gaussianity as well as high-temporal autocorrelation. In this paper, we developed an autoregressive matrix-Gaussian copula graphical model (ARMGCGM) approach to estimate the partial correlations and thereby infer the functional connectivity patterns within the auditory system while appropriately accounting for autocorrelations between successive fMRI scans. Our results show strong positive partial correlations between successive structures in the primary auditory pathway on each side (left and right), including between auditory midbrain and thalamus, and between primary and associative auditory cortex. These results are highly stable when splitting the data in halves according to the acquisition schemes and computing partial correlations separately for each half of the data, as well as across cross-validation folds. In contrast, full correlation-based analysis identified a rich network of interconnectivity that was not specific to adjacent nodes along the pathway. Overall, our results demonstrate that unique functional connectivity patterns along the auditory pathway are recoverable using novel connectivity approaches and that our connectivity methods are reliable across multiple acquisitions. 
    more » « less
  2. Hyperdimensional (HD) computing is a brain-inspired form of computing based on the manipulation of high-dimensional vectors. Offering robust data representation and relatively fast learning, HD computing is a promising candidate for energy-efficient classification of biological signals. This paper describes the application of HD computing-based machine learning to the classification of biological gender from resting-state and task functional magnetic resonance imaging (fMRI) from the publicly available Human Connectome Project (HCP). The developed HD algorithm derives predictive features through mean dynamic functional connectivity (dFC) analysis. Record encoding is employed to map features onto hyperdimensional space. Utilizing adaptive retraining techniques, the HD computing-based classifier achieves an average biological gender classification accuracy of 87%, as compared to 84% achieved by edge entropy measure. 
    more » « less
  3. Resting-state functional magnetic resonance imaging (rs-fMRI) is a noninvasive technique pivotal for understanding human neural mechanisms of intricate cognitive processes. Most rs-fMRI studies compute a single static functional connectivity matrix across brain regions of interest, or dynamic functional connectivity matrices with a sliding window approach. These approaches are at risk of oversimplifying brain dynamics and lack proper consideration of the goal at hand. While deep learning has gained substantial popularity for modeling complex relational data, its application to uncovering the spatiotemporal dynamics of the brain is still limited. In this study we propose a novel interpretable deep learning framework that learns goal-specific functional connectivity matrix directly from time series and employs a specialized graph neural network for the final classification. Our model, DSAM, leverages temporal causal convolutional networks to capture the temporal dynamics in both low- and high-level feature representations, a temporal attention unit to identify important time points, a self-attention unit to construct the goal-specific connectivity matrix, and a novel variant of graph neural network to capture the spatial dynamics for downstream classification. To validate our approach, we conducted experiments on the Human Connectome Project dataset with 1075 samples to build and interpret the model for the classification of sex group, and the Adolescent Brain Cognitive Development Dataset with 8520 samples for independent testing. Compared our proposed framework with other state-of-art models, results suggested this novel approach goes beyond the assumption of a fixed connectivity matrix, and provides evidence of goal-specific brain connectivity patterns, which opens up potential to gain deeper insights into how the human brain adapts its functional connectivity specific to the task at hand. 
    more » « less
  4. null (Ed.)
    Recent works have explored the neuronal functional differences in biological gender and intelligence using static functional connectivity. Objective: This paper explores the predictive capability of dynamic functional connectivity extracted from functional magnetic resonance imaging (fMRI) of the human brain. Methods: Several state-of-the-art features extracted from static functional connectivity of the brain are employed to predict biological gender and intelligence using publicly available Human Connectome Project (HCP) database. Next, a novel tensor parallel factor (PARAFAC) decomposition model is proposed to decompose sequence of dynamic connectivity matrices into common connectivity components that are orthonormal to each other, common time-courses, and corresponding distinct subject-wise weights. The subject-wise loading of the components are employed to predict biological gender and intelligence using a random forest classifier (respectively,regressor) using5-foldcross-validation. Results:The results demonstrate that dynamic functional connectivity can indeed classify biological gender with a high accuracy (0.94, where male identification accuracy was 0.87 and female identification accuracy was 0.97). It can also predict intelligence with less normalized mean square error (0.139 for fluid intelligence and 0.031 for fluid ability metrics) compared with other functional connectivity measures (the nearest mean square error were 0.147 and 0.037 for fluid intelligence and fluid ability metrics, respectively using static connectivity approaches). Conclusion: Our work is an important milestone for the understanding of non-stationary behavior of hemodynamic blood-oxygen level dependent (BOLD) signal in brain and how they are associated with biological gender and intelligence. Significance: The paper demonstrates that dynamic behavior of brain can contribute substantially towards forming a fingerprint of biological gender and intelligence. 
    more » « less
  5. Background: Schizophrenia affects around 1% of the global population. Functional connectivity extracted from resting-state functional magnetic resonance imaging (rs-fMRI) has previously been used to study schizophrenia and has great potential to provide novel insights into the disorder. Some studies have shown abnormal functional connectivity in the default mode network (DMN) of individuals with schizophrenia, and more recent studies have shown abnormal dynamic functional connectivity (dFC) in individuals with schizophrenia. However, DMN dFC and the link between abnormal DMN dFC and symptom severity have not been well-characterized. Method: Resting-state fMRI data from subjects with schizophrenia (SZ) and healthy controls (HC) across two datasets were analyzed independently. We captured seven maximally independent subnodes in the DMN by applying group independent component analysis and estimated dFC between subnode time courses using a sliding window approach. A clustering method separated the dFCs into five reoccurring brain states. A feature selection method modeled the difference between SZs and HCs using the state-specific FC features. Finally, we used the transition probability of a hidden Markov model to characterize the link between symptom severity and dFC in SZ subjects. Results: We found decreases in the connectivity of the anterior cingulate cortex (ACC) and increases in the connectivity between the precuneus (PCu) and the posterior cingulate cortex (PCC) (i.e., PCu/PCC) of SZ subjects. In SZ, the transition probability from a state with weaker PCu/PCC and stronger ACC connectivity to a state with stronger PCu/PCC and weaker ACC connectivity increased with symptom severity. Conclusions: To our knowledge, this was the first study to investigate DMN dFC and its link to schizophrenia symptom severity. We identified reproducible neural states in a data-driven manner and demonstrated that the strength of connectivity within those states differed between SZs and HCs. Additionally, we identified a relationship between SZ symptom severity and the dynamics of DMN functional connectivity. We validated our results across two datasets. These results support the potential of dFC for use as a biomarker of schizophrenia and shed new light upon the relationship between schizophrenia and DMN dynamics. 
    more » « less