skip to main content


Title: Design Rules and In-Situ Quality Monitoring of Thin-Wall Features Made Using Laser Powder Bed Fusion
The goal of this work is to quantify the link between the design features (geometry), in-situ process sensor signatures, and build quality of parts made using laser powder bed fusion (LPBF) additive manufacturing (AM) process. This knowledge is critical for establishing design rules for AM parts, and to detecting impending build failures using in-process sensor data. As a step towards this goal, the objectives of this work are two-fold: Quantify the effect of the geometry and orientation on the build quality of thin-wall features. To explain further, the geometry-related factor is the ratio of the length of a thin-wall (l) to its thickness (t) defined as the aspect ratio (length-to-thickness ratio, l/t), and the angular orientation (θ) of the part, which is defined as the angle of the part in the X-Y plane relative to the re-coater blade of the LPBF machine. Assess the thin-wall build quality by analyzing images of the part obtained at each layer from an in-situ optical camera using a convolutional neural network. To realize these objectives, we designed a test part with a set of thin-wall features (fins) with varying aspect ratio from Titanium alloy (Ti-6Al-4V) material — the aspect ratio l/t of the thin-walls ranges from 36 to 183 (11 mm long (constant), and 0.06 mm to 0.3 mm in thickness). These thin-wall test parts were built under three angular orientations of 0°, 60°, and 90°. Further, the parts were examined offline using X-ray computed tomography (XCT). Through the offline XCT data, the build quality of the thin-wall features in terms of their geometric integrity is quantified as a function of the aspect ratio and orientation angle, which suggests a set of design guidelines for building thin-wall structures with LPBF. To monitor the quality of the thin-wall, in-process images of the top surface of the powder bed were acquired at each layer during the build process. The optical images are correlated with the post build quantitative measurements of the thin-wall through a deep learning convolutional neural network (CNN). The statistical correlation (Pearson coefficient, ρ) between the offline XCT measured thin-wall quality, and CNN predicted measurement ranges from 80% to 98%. Consequently, the impending poor quality of a thin-wall is captured from in-situ process data.  more » « less
Award ID(s):
1752069
NSF-PAR ID:
10140525
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ASME, Manufacturing Science and Engineering Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The goal of this work to mitigate flaws in metal parts produced from laser powder bed fusion (LPBF) additive manufacturing (AM) process. As a step towards this goal, the objective of this work is to predict the build quality of a part as it is being printed via deep learning of in-situ layer-wise images obtained from an optical camera instrumented in the LPBF machine. To realize this objective, we designed a set of thin-wall features (fins) from Titanium alloy (Ti-6Al-4V) material with varying length-to-thickness ratio. These thin-wall test parts were printed under three different build orientations and in-situ images of their top surface were acquired during the process. The parts were examined offline using X-ray computed tomography (XCT), and their build quality was quantified in terms of statistical features, such as the thickness and consistency of its edges. Subsequently, a deep learning convolutional neural network (CNN) was trained to predict the XCT-derived statistical quality features using the layer-wise optical images of the thin-wall part as inputs. The statistical correlation between CNN-based predictions and XCT-observed quality measurements exceeds 85%. This work has two outcomes consequential to the sustainability of additive manufacturing: (1) It provides practitioners with a guideline for building thin-wall features with minimal defects, and (2) the high correlation between the offline XCT measurements and in-situ sensor-based quality metrics substantiates the potential for applying deep learning approaches for the real-time prediction of build flaws in LPBF. 
    more » « less
  2. null (Ed.)
    Despite its potential to overcome the design and processing barriers of traditional subtractive and formative manufacturing techniques, the use of laser powder bed fusion (LPBF) metal additive manufacturing is currently limited due to its tendency to create flaws. A multitude of LPBF-related flaws, such as part-level deformation, cracking, and porosity are linked to the spatiotemporal temperature distribution in the part during the process. The temperature distribution, also called the thermal history, is a function of several factors encompassing material properties, part geometry and orientation, processing parameters, placement of supports, among others. These broad range of factors are difficult and expensive to optimize through empirical testing alone. Consequently, fast and accurate models to predict the thermal history are valuable for mitigating flaw formation in LPBF-processed parts. In our prior works, we developed a graph theory-based approach for predicting the temperature distribution in LPBF parts. This mesh-free approach was compared with both non-proprietary and commercial finite element packages, and the thermal history predictions were experimentally validated with in- situ infrared thermal imaging data. It was found that the graph theory-derived thermal history predictions converged within 30–50% of the time of non-proprietary finite element analysis for a similar level of prediction error. However, these prior efforts were based on small prismatic and cylinder-shaped LPBF parts. In this paper, our objective was to scale the graph theory approach to predict the thermal history of large volume, complex geometry LPBF parts. To realize this objective, we developed and applied three computational strategies to predict the thermal history of a stainless steel (SAE 316L) impeller having outside diameter 155 mm and vertical height 35 mm (700 layers). The impeller was processed on a Renishaw AM250 LPBF system and required 16 h to complete. During the process, in-situ layer-by-layer steady state surface temperature measurements for the impeller were obtained using a calibrated longwave infrared thermal camera. As an example of the outcome, on implementing one of the three strategies reported in this work, which did not reduce or simplify the part geometry, the thermal history of the impeller was predicted with approximate mean absolute error of 6% (standard deviation 0.8%) and root mean square error 23 K (standard deviation 3.7 K). Moreover, the thermal history was simulated within 40 min using desktop computing, which is considerably less than the 16 h required to build the impeller part. Furthermore, the graph theory thermal history predictions were compared with a proprietary LPBF thermal modeling software and non-proprietary finite element simulation. For a similar level of root mean square error (28 K), the graph theory approach converged in 17 min, vs. 4.5 h for non-proprietary finite element analysis. 
    more » « less
  3. Abstract The objective of this work is to provide experimental validation of the graph theory approach for predicting the thermal history in additively manufactured parts that was recently published in these transactions. In the present paper the graph theory approach is validated with in-situ infrared thermography data in the context of the laser powder bed fusion (LPBF) additive manufacturing process. We realize this objective through the following three tasks. First, two types of test parts (stainless steel) are made in two corresponding build cycles on a Renishaw AM250 LPBF machine. The intent of both builds is to influence the thermal history of the part by changing the cooling time between melting of successive layers, called interlayer cooling time. Second, layer-wise thermal images of the top surface of the part are acquired using an in-situ a priori calibrated infrared camera. Third, the thermal imaging data obtained during the two builds were used to validate the graph theory-predicted surface temperature trends. Furthermore, the surface temperature trends predicted using graph theory are compared with results from finite element analysis. As an example, for one the builds, the graph theory approach accurately predicted the surface temperature trends to within 6% mean absolute percentage error, and approximately 14 Kelvin root mean squared error of the experimental data. Moreover, using the graph theory approach the temperature trends were predicted in less than 26 minutes which is well within the actual build time of 171 minutes. 
    more » « less
  4. null (Ed.)
    Abstract

    The objective of this work is to provide experimental validation of the graph theory approach for predicting the thermal history in additively manufactured parts that was recently published in the ASME transactions. In the present paper the graph theory approach is validated with in-situ infrared thermography data in the context of the laser powder bed fusion (LPBF) additive manufacturing process. We realize this objective through the following three tasks. First, two types of test parts (stainless steel) are made in two corresponding build cycles on a Renishaw AM250 LPBF machine. The intent of both builds is to influence the thermal history of the part by changing the cooling time between melting of successive layers, called interlayer cooling time. Second, layer-wise thermal images of the top surface of the part are acquired using an in-situ a priori calibrated infrared camera. Third, the thermal imaging data obtained during the two builds were used to validate the graph theory-predicted surface temperature trends. Furthermore, the surface temperature trends predicted using graph theory are compared with results from finite element analysis. As an example, for one the builds, the graph theory approach accurately predicted the surface temperature trends to within 6% mean absolute percentage error, and approximately 14 Kelvin root mean squared error of the experimental data. Moreover, using the graph theory approach the temperature trends were predicted in less than 26 minutes which is well within the actual build time of 171 minutes.

     
    more » « less
  5. We developed and applied a model-based feedforward control approach to reduce temperature-induced flaw formation in the laser powder bed fusion (LPBF) additive manufacturing process. The feedforward control is built upon three basic steps. First, the thermal history of the part is rapidly predicted using a mesh-free graph theory model. Second, thermal history metrics are extracted from the model to identify regions of heat buildup, symptomatic of flaw formation. Third, process parameters are changed layer-by-layer based on insights from the thermal model. This technique was validated with two identical build plates (Inconel 718). Parts on the first build plate were made under manufacturer recommended nominal process parameters. Parts on the second build plate were made with model optimized process parameters. Results were validated with in-situ infrared thermography, and materials characterization techniques. Parts produced under controlled processing exhibited superior geometric accuracy and resolution, finer grain size, and increased microhardness. 
    more » « less