skip to main content


Title: The Viscosity and Atomic Structure of Volatile-Bearing Melilititic Melts at High Pressure and Temperature and the Transport of Deep Carbon
Understanding the viscosity of mantle-derived magmas is needed to model their migration mechanisms and ascent rate from the source rock to the surface. High pressure–temperature experimental data are now available on the viscosity of synthetic melts, pure carbonatitic to carbonate–silicate compositions, anhydrous basalts, dacites and rhyolites. However, the viscosity of volatile-bearing melilititic melts, among the most plausible carriers of deep carbon, has not been investigated. In this study, we experimentally determined the viscosity of synthetic liquids with ~31 and ~39 wt% SiO2, 1.60 and 1.42 wt% CO2 and 5.7 and 1 wt% H2O, respectively, at pressures from 1 to 4.7 GPa and temperatures between 1265 and 1755 °C, using the falling-sphere technique combined with in situ X-ray radiography. Our results show viscosities between 0.1044 and 2.1221 Pa·s, with a clear dependence on temperature and SiO2 content. The atomic structure of both melt compositions was also determined at high pressure and temperature, using in situ multi-angle energy-dispersive X-ray diffraction supported by ex situ microFTIR and microRaman spectroscopic measurements. Our results yield evidence that the T–T and T–O (T = Si,Al) interatomic distances of ultrabasic melts are higher than those for basaltic melts known from similar recent studies. Based on our experimental data, melilititic melts are expected to migrate at a rate ~from 2 to 57 km·yr−1 in the present-day or the Archaean mantle, respectively.  more » « less
Award ID(s):
1761388 1732256
NSF-PAR ID:
10140589
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Minerals
Volume:
10
Issue:
3
ISSN:
2075-163X
Page Range / eLocation ID:
267
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Many lines of evidence from high P–T experiments, thermodynamic models, and natural observations suggest that slab-derived aqueous fluids, which flux mantle wedges contain variable amounts of dissolved carbon. However, constraints on the effects of H2O–CO2 fluids on mantle melting, particularly at mantle wedge P–T conditions, are limited. Here, we present new piston cylinder experiments on fertile and depleted peridotite compositions with 3.5 wt.% H2O and XCO2 [= molar CO2 / (CO2 + H2O)] of 0.04–0.17. Experiments were performed at 2–3 GPa and 1350°C to assess how temperature, peridotite fertility, and XCO2 of slab-derived fluid affects partial melting in mantle wedges. All experiments produce olivine + orthopyroxene +7 to 41 wt.% partial melt. Our new data, along with previous lower temperature data, show that as mantle wedge temperature increases, primary melts become richer in SiO2, FeO*, and MgO and poorer CaO, Al2O3, and alkalis when influenced by H2O–CO2 fluids. At constant P–T and bulk H2O content, the extent of melting in the mantle wedge is largely controlled by peridotite fertility and XCO2 of slab-fluid. High XCO2 depleted compositions generate ~7 wt.% melt, whereas, at identical P–T, low XCO2 fertile compositions generate ~30 to 40 wt.% melt. Additionally, peridotite fertility and XCO2 have significant effects on peridotite partial melt compositions. At a constant P–T–XCO2, fertile peridotites generate melts richer in CaO and Al2O3 and poorer in SiO2, MgO + FeO, and alkalis. Similar to previous experimental studies, at a constant P–T fertility condition, as XCO2 increases, SiO2 and CaO of melts systematically decrease and increase, respectively. Such distinctive effects of oxidized form of dissolved carbon on peridotite partial melt compositions are not observed if the carbon-bearing fluid is reduced, such as CH4-bearing. Considering the large effect of XCO2 on melt SiO2 and CaO concentrations and the relatively oxidized nature of arc magmas, we compare the SiO2/CaO of our experimental melts and melts from previous peridotite + H2O ± CO2 studies to the SiO2/CaO systematics of primitive arc basalts and ultra-calcic, silica-undersaturated arc melt inclusions. From this comparison, we demonstrate that across most P–T–fertility conditions predicted for mantle wedges, partial melts from bulk compositions with XCO2 ≥ 0.11 have lower SiO2/CaO than all primitive arc melts found globally, even when correcting for olivine fractionation, whereas partial melts from bulk compositions with XCO2 = 0.04 overlap the lower end of the SiO2/CaO field defined by natural data. These results suggest that the upper XCO2 limit of slab-fluids influencing primary arc magma formation is 0.04 < XCO2 < 0.11, and this upper limit is likely to apply globally. Lastly, we show that the anomalous SiO2/CaO and CaO/Al2O3 signatures observed in ultra-calcic arc melt inclusions can be reproduced by partial melting of either CO2-bearing hydrous fertile and depleted peridotites with 0 < XCO2 < 0.11 at 2–3 GPa, or from nominally CO2-free hydrous fertile peridotites at P > 3 GPa.

     
    more » « less
  2. The granitic water-saturated solidus (G-WSS) is the lower temperature limit of magmatic mineral crystallization. The accepted water-saturated solidus for granitic compositions was largely determined >60 years ago1. More recent advances in experimental petrology, improved analytical techniques, and recent observations that granitic systems can remain active or spend a significant proportion of their lives at conditions below the traditional G-WSS2–5 necessitate a careful experimental investigation of the near-solidus regions of granitic systems. Natural and synthetic starting materials were melted at 10 kbar and 900°C with 48 wt% H2O to produce hydrous glasses for subsequent experiments at lower PT conditions used to locate the G-WSS. We performed crystallization experiments and melting experiments at temperatures ranging from 575 to 800°C and 1, 6, 8, and 10 kbar on 12 granitoid compositions. First, we ran a series of isothermal crystallization experiments along each isobar at progressively lower temperatures until runs completely crystallized to identify apparent solidus temperatures. Geochemical analyses of quenched glass compositions demonstrate that progressive crystallization drives all starting compositions towards silica-rich, water-saturated rhyolitic/granitic melts (e.g., ~7578 wt% SiO2). After identifying the apparent solidus temperatures at which the various compositions crystallized, we then ran series of reversal-type melting experiments. With the goal of producing rocks with hydrous equilibrium microstructures, we crystallized compositions at temperatures ~10°C below the apparent solidus identified in crystallization experiments, and then heated isobarically to conditions that produced ~20% melt during the crystallization experiments. Importantly, crystallization experiments and heating experiments at the same PT conditions produced similar proportions of melt, crystals, and vapor. A time-series of experiments 230 days at PT conditions previously identified to produce ~10% to 20% melt did not reveal any kinetic effects on melt crystallization. Experiments at 6 to 10 kbar crystallized/melted at temperatures close to the published G-WSS. However, at lower pressures where the published G-WSS is strongly curved in PT space, all compositions investigated contained melt to temperatures ~75 to 100°C below the accepted G-WSS. The similarity of crystallization temperatures for the higher-pressure experiments to previously published results, similar phase proportions in melting and crystallization experiments, and the lack of kinetic effects on crystallization collectively suggest that our lower pressure constraints on the G-WSS are accurate. The new experimental results demonstrating that the lower-pressure G-WSS is significantly lower than unanimously accepted estimates will help us to better understand the storage conditions, evolution, and potential for eruption in mid- to upper-crustal silicic magmatic systems. (1) Tuttle, O.; Bowen, N. Origin of Granite in the Light of Experimental Studies in the System NaAlSi3O8–KAlSi3O8–SiO2–H2O; Geological Society of America Memoirs; Geological Society of America, 1958; Vol. 74. https://doi.org/10.1130/MEM74. (2) Rubin, A. E.; Cooper, K. M.; Till, C. B.; Kent, A. J. R.; Costa, F.; Bose, M.; Gravley, D.; Deering, C.; Cole, J. Rapid Cooling and Cold Storage in a Silicic Magma Reservoir Recorded in Individual Crystals. Science 2017, 356 (6343), 1154–1156. https://doi.org/10.1126/science.aam8720. (3) Andersen, N. L.; Jicha, B. R.; Singer, B. S.; Hildreth, W. Incremental Heating of Bishop Tuff Sanidine Reveals Preeruptive Radiogenic Ar and Rapid Remobilization from Cold Storage. Proceedings of the National Academy of Sciences 2017, 114 (47), 12407–12412. https://doi.org/10.1073/pnas.1709581114. (4) Ackerson, M. R.; Mysen, B. O.; Tailby, N. D.; Watson, E. B. Low-Temperature Crystallization of Granites and the Implications for Crustal Magmatism. Nature 2018, 559 (7712), 94–97. https://doi.org/10.1038/s41586-018-0264-2. (5) Glazner, A. F.; Bartley, J. M.; Coleman, D. S.; Lindgren, K. Aplite Diking and Infiltration: A Differentiation Mechanism Restricted to Plutonic Rocks. Contributions to Mineralogy and Petrology 2020, 175 (4). https://doi.org/10.1007/s00410-020-01677-1. 
    more » « less
  3. Abstract

    A collection of quaternary, high-MgO (≤13.4 wt%) basanite and minette cinder and lava cones, with an enhanced arc geochemical signature, are located along the northern margin of the N–S Colima rift in western Mexico. The Colima rift overlies the lithospheric suture between the Jalisco block and Guerrero terrane, as well as the tear between the Rivera and Cocos subducting oceanic plates. From the literature, volatile analyses of olivine-hosted melt inclusions in the Colima cone samples document notably high concentrations of dissolved H2O in the melt (≤ 7.0 wt%) as well as degassing-induced phenocryst growth over a range of depths ≤25 km. In this study, it is shown that the high-MgO character of the Colima suite reflects liquid compositions, consistent with evidence for their rapid transit to the surface, without stalling in a crustal magma chamber. The most Mg-rich olivine analyzed in each sample matches the equilibrium composition at the liquidus based on olivine-melt Mn–Mg and Fe2+–Mg exchange coefficients. Application of both a Mg- and Ni-based olivine-melt thermometer, calibrated on the same experimental data set, to the Colima cone suite provides the temperature and dissolved H2O content at the liquidus. Because the Ni thermometer is insensitive to dissolved H2O in the melt, it gives the actual temperature at the onset of olivine phenocryst growth. For the nine Colima samples that range from 13.4–9.2 wt% MgO, resulting temperatures range from 1221°C to 1056°C (± 6–11°C). In contrast, the Mg thermometer is sensitive to dissolved H2O in the melt, and its application (without a correction of H2O) gives the temperature of olivine crystallization under anhydrous conditions. When the Mg- and Ni-based temperatures are paired, the depression of the liquidus (∆T = TMg–TNi) due to dissolved H2O can be obtained. For the high-MgO (>9 wt%) Colima samples, ∆T values range from 188°C to 109°C. Corrections for the effect of pressure (i.e. evidence that phenocryst growth began at ~700 MPa), increase ∆T by ~21°C. An updated model calibration (on experiments from the literature) that relates ∆T with dissolved H2O in the melt shows that the best fit (R2 = 0.95) is linear, wt% H2O = 0.047*∆T, with a standard error of ±0.5 wt%. Although the experimental data set spans a wide range of melt composition (e.g. 47–58 wt% SiO2, 4.4–10.2 wt% MgO, 1.3–4.9 wt% Na2O, 0.1–5.0 wt% K2O, 0.3–5.3 wt% H2O), no dependence on anhydrous melt composition is resolved. Application of this updated model to the Colima suite gives H2O contents of 5.1–8.8 wt% H2O, consistent with those analyzed in olivine-hosted MIs from the literature. When the thermometry and hygrometry results for the Colima cone suite are compared to those for the adjacent calc–alkaline basalts from the Tancítaro Volcanic Field (TVF) in Michoacán, two distinct linear trends in a plot of wt% H2O vs. temperature are found, indicative of different mantle sources. It is proposed that the high-MgO (>11 wt%) Colima cone melts were derived from a phlogopite-bearing harzburgitic mantle at the base of the Jalisco block lithosphere, whereas both TVF and Colima melts with ≤10 wt% MgO were derived from the asthenosphere (i.e. arc mantle wedge). In both mantle sources, slab-derived fluids were an important source of H2O.

     
    more » « less
  4. Abstract

    Siliceous slab-derived partial melts infiltrate the sub-arc mantle and cause rock-melt reactions, which govern the formation of diverse primary arc magmas and lithological heterogeneities. The effect of bulk water content, composition of reactants, and nature of melt infiltration (porous versus channelized) on the rock-melt reactions at sub-arc conditions have been investigated by previous studies. However, the effect of multiple episodes of rock-melt reactions in such scenarios has not been investigated before. Here, we explore mantle wedge modifications through serial additions of hydrous-silicic slab partial melts and whether such a process may ultimately explain the origin of high-Mg# andesites found in arcs worldwide. A series of piston-cylinder experiments simulate a serial addition of silicic slab melts in up to three stages (I through III) at 3 GPa and 800–1050°C, using rock-melt proportions of 75–25 and 50–50. A synthetic KLB-1 and a natural rhyolite (JR-1) represented the mantle and the slab components, respectively. Right from the first rock-melt interaction, the peridotite mantle transforms into olivine-free mica-rich pyroxenites ± amphibole ± quartz/coesite in equilibrium with rhyolitic-hydrous melts (72–80 wt% SiO2 and 40–90 Mg#). The formation of olivine-free pyroxenite seems to be controlled by complex functions of T, P, rock-melt ratio, wedge composition, and silica activity of the slab-melt. Remarkably, the pyroxenites approach a melt-buffered state with progressive stages of rock-melt reactions, where those rhyolitic melts inherit and preserve the major (alkalis, Fe, Mg, Ca) and trace element slab-signature. Our results demonstrate that lithological heterogeneities such as pyroxenites formed as products of rock-melt reactions in the sub-arc mantle may function as melt ‘enablers,’ implying that they may act as pathways that enable the infiltrating melt to retain their slab signature without undergoing modification. Moreover, the density contrast between the products of rock-melt reaction (melts and residues) and the average mantle wedge (~150 to 400 kg/m3) may help forming instabilities and diapiric rise of the slab components into the mantle wedge. However, the fate of the primitive slab-melts seems to be associated with the length of the pathway of mantle interaction which explains the evident wide magma spectrum as well as their degree of slab garnet-signature dilution. This work and the existence of high-Mg# Mexican-trondhjemites indicates that almost pristine slab-melts can make their way up to crustal levels and contribute to the arc magma diversity.

     
    more » « less
  5. Abstract The solubility of CO2 in hydrous basaltic andesite was examined in fO2-controlled experiments at a temperature of 1125 °C and pressures between 310–1200 MPa. Concentrations of dissolved H2O and CO2 in experimental glasses were determined by ion microprobe calibrated on a subset of run glasses analyzed by high-temperature vacuum manometry. Assuming that the solubility of H2O in mafic melt is relatively well known, estimates of XH2Ofluid and PH2Ofluid in the saturating fluid were modeled, and by difference, values for XCO2fluid and PCO2fluid were obtained (XCO2 ~0.5–0.9); fCO2 could be then calculated from the fluid composition, temperature, and pressure. Dissolved H2O over a range of 2.3–5.5 wt% had no unequivocal influence on the dissolution of CO2 at the pressures and fluid compositions examined. For these H2O concentrations, dissolved CO2 increases with fCO2 following an empirical power-law relation: dissolved CO2 (ppmw) = 14.9−3.5+4.5[fCO2 (MPa)]0.7±0.03. The highest-pressure results plot farthest from this equation but are within its 1 standard-error uncertainty envelope. We compare our experimental data with three recent CO2-H2O solubility models: Papale et al. (2006); Iacono-Marziano et al. (2012); and Ghiorso and Gualda (2015). The Papale et al. (2006) and Iacono-Marizano et al. (2012) models give similar results, both over-predicting the solubility of CO2 in a melt of the Pavlof basaltic andesite composition across the fCO2 range, whereas the Ghiorso and Gualda (2015) model under-predicts CO2 solubility. All three solubility models would indicate a strong enhancement of CO2 solubility with increasing dissolved H2O not apparent in our results. We also examine our results in the context of previous high-pressure CO2 solubility experiments on basaltic melts. Dissolved CO2 correlates positively with mole fraction (Na+K+Ca)/Al across a compositional spectrum of trachybasalt-alkali basalt-tholeiite-icelandite-basaltic andesite. Shortcomings of current solubility models for a widespread arc magma type indicate that our understanding of degassing in the deep crust and uppermost mantle remains semi-quantitative. Experimental studies systematically varying concentrations of melt components (Mg, Ca, Na, K, Al, Si) may be necessary to identify solubility reactions, quantify their equilibrium constants, and thereby build an accurate and generally applicable solubility model. 
    more » « less