skip to main content


Title: Light availability modulates the effects of warming in a marine N<sub>2</sub> fixer
Abstract. Trichodesmium species, as a group of photosynthetic N2 fixers(diazotrophs), play an important role in the marine biogeochemical cycles ofnitrogen and carbon, especially in oligotrophic waters. How ongoing oceanwarming may interact with light availability to affect Trichodesmium is not yet clear. Wegrew Trichodesmium erythraeum IMS 101 at three temperature levels of 23, 27, and 31∘C undergrowth-limiting and growth-saturating light levels of 50 and 160 µmol quanta m−2 s−1, respectively, for at least 10 generations and thenmeasured physiological performance, including the specific growth rate, N2fixation rate, and photosynthesis. Light availability significantly modulatedthe growth response of Trichodesmium to temperature, with the specific growth ratepeaking at ∼27∘C under the light-saturatingconditions, while growth of light-limited cultures was non-responsive acrossthe tested temperatures (23, 27, and 31∘C). Short-term thermalresponses for N2 fixation indicated that both high growth temperatureand light intensity increased the optimum temperature (Topt) forN2 fixation and decreased its susceptibility to supra-optimaltemperatures (deactivation energy – Eh). Simultaneously, alllight-limited cultures with low Topt and high Eh were unable tosustain N2 fixation during short-term exposure to high temperatures (33–34∘C) that are not lethal for the cells grown underlight-saturating conditions. Our results imply that Trichodesmium spp. growing under lowlight levels while distributed deep in the euphotic zone or under cloudyweather conditions might be less sensitive to long-term temperature changesthat occur on the timescale of multiple generations but are more susceptible toabrupt (less than one generation time span) temperature changes, such asthose induced by cyclones and heat waves.  more » « less
Award ID(s):
1657757
NSF-PAR ID:
10140591
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Biogeosciences
Volume:
17
Issue:
4
ISSN:
1726-4189
Page Range / eLocation ID:
1169 to 1180
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Nitrogen availability limits marine productivity across large ocean regions. Diazotrophs can supply new nitrogen to the marine environment via nitrogen (N2) fixation, relieving nitrogen limitation. The distributions of diazotrophs and N2 fixation have been hypothesized to be generally controlled by temperature, phosphorus, and iron availability in the global ocean. However, even in the North Atlantic where most research on diazotrophs and N2 fixation has taken place, environmental controls remain contentious. Here we measure diazotroph composition, abundance, and activity at high resolution using newly developed underway sampling and sensing techniques. We capture a diazotrophic community shift from Trichodesmium to UCYN-A between the oligotrophic, warm (25–29 °C) Sargasso Sea and relatively nutrient-enriched, cold (13–24 °C) subpolar and eastern American coastal waters. Meanwhile, N2 fixation rates measured in this study are among the highest ever recorded globally and show significant increase with phosphorus availability across the transition from the Gulf Stream into subpolar and coastal waters despite colder temperatures and higher nitrate concentrations. Transcriptional patterns in both Trichodesmium and UCYN-A indicate phosphorus stress in the subtropical gyre. Over this iron-replete transect spanning the western North Atlantic, our results suggest that temperature is the major factor controlling the diazotrophic community structure while phosphorous drives N2 fixation rates. Overall, the occurrence of record-high UCYN-A abundance and peak N2 fixation rates in the cold coastal region where nitrate concentrations are highest (~200 nM) challenges current paradigms on what drives the distribution of diazotrophs and N2 fixation.

     
    more » « less
  2. null (Ed.)
    Primary productivity in the nutrient-poor subtropical ocean gyres depends on new nitrogen inputs from nitrogen fixers that convert inert dinitrogen gas into bioavailable forms. Temperature and iron (Fe) availability constrain marine nitrogen fixation, and both are changing due to anthropogenic ocean warming. We examined the physiological responses of the globally important marine nitrogen fixer, Crocosphaera watsonii across its full thermal range as a function of iron availability. At the lower end of its thermal range, from 22 to 27°C, Crocosphaera growth, nitrogen fixation, and Nitrogen-specific Iron Use Efficiencies (N-IUEs, mol N fixed hour –1 mol Fe –1 ) increased with temperature. At an optimal growth temperature of 27°C, N-IUEs were 66% higher under iron-limited conditions than iron-replete conditions, indicating that low-iron availability increases metabolic efficiency. However, Crocosphaera growth and function decrease from 27 to 32°C, temperatures that are predicted for an increasing fraction of tropical oceans in the future. Altogether, this suggests that Crocosphaera are well adapted to iron-limited, warm waters, within prescribed limits. A model incorporating these results under the IPCC RCP 8.5 warming scenario predicts that Crocosphaera N-IUEs could increase by a net 47% by 2100, particularly in higher-latitude waters. These results contrast with published responses of another dominant nitrogen fixer ( Trichodesmium ), with predicted N-IUEs that increase most in low-latitude, tropical waters. These models project that differing responses of Crocosphaera and Trichodesmium N-IUEs to future warming of iron-limited oceans could enhance their current contributions to global marine nitrogen fixation with rates increasing by ∼91 and ∼22%, respectively, thereby shifting their relative importance to marine new production and also intensifying their regional divergence. Thus, interactive temperature and iron effects may profoundly transform existing paradigms of nitrogen biogeochemistry and primary productivity in open ocean regimes. 
    more » « less
  3. Abstract. Trichodesmium is a globally important marine microbe that provides fixednitrogen (N) to otherwise N-limited ecosystems. In nature, nitrogen fixationis likely regulated by iron or phosphate availability, but the extent andinteraction of these controls are unclear. From metaproteomics analysesusing established protein biomarkers for nutrient stress, we foundthat iron–phosphate co-stress is the norm rather than the exception for Trichodesmium colonies in theNorth Atlantic Ocean. Counterintuitively, the nitrogenase enzyme was moreabundant under co-stress as opposed to single nutrient stress. This isconsistent with the idea that Trichodesmium has a specific physiological state duringnutrient co-stress. Organic nitrogen uptake was observed and occurredsimultaneously with nitrogen fixation. The quantification of the phosphate ABCtransporter PstA combined with a cellular model of nutrient uptake suggestedthat Trichodesmium is generally confronted by the biophysical limits of membrane spaceand diffusion rates for iron and phosphate acquisition in the field. Colonyformation may benefit nutrient acquisition from particulate and organicsources, alleviating these pressures. The results highlight that topredict the behavior of Trichodesmium, both Fe and P stress must be evaluatedsimultaneously. 
    more » « less
  4. Abstract

    The photosynthetic cyanobacterium Trichodesmium is widely distributed in the surface low latitude ocean where it contributes significantly to N2 fixation and primary productivity. Previous studies found nifH genes and intact Trichodesmium colonies in the sunlight-deprived meso- and bathypelagic layers of the ocean (200–4000 m depth). Yet, the ability of Trichodesmium to fix N2 in the dark ocean has not been explored. We performed 15N2 incubations in sediment traps at 170, 270 and 1000 m at two locations in the South Pacific. Sinking Trichodesmium colonies fixed N2 at similar rates than previously observed in the surface ocean (36–214 fmol N cell−1 d−1). This activity accounted for 40 ± 28% of the bulk N2 fixation rates measured in the traps, indicating that other diazotrophs were also active in the mesopelagic zone. Accordingly, cDNA nifH amplicon sequencing revealed that while Trichodesmium accounted for most of the expressed nifH genes in the traps, other diazotrophs such as Chlorobium and Deltaproteobacteria were also active. Laboratory experiments simulating mesopelagic conditions confirmed that increasing hydrostatic pressure and decreasing temperature reduced but did not completely inhibit N2 fixation in Trichodesmium. Finally, using a cell metabolism model we predict that Trichodesmium uses photosynthesis-derived stored carbon to sustain N2 fixation while sinking into the mesopelagic. We conclude that sinking Trichodesmium provides ammonium, dissolved organic matter and biomass to mesopelagic prokaryotes.

     
    more » « less
  5. Abstract. This paper presents a new technique to derive thermospheric temperature from space-based disk observations of far ultraviolet airglow. The technique, guided by findings from principal component analysis of synthetic daytime Lyman–Birge–Hopfield (LBH) disk emissions, uses a ratio of the emissions in two spectral channels that together span the LBH (2,0) band to determine the change in band shape with respect to a change in the rotational temperature of N2. The two-channel-ratio approach limits representativeness and measurement error by only requiring measurement of the relative magnitudes between two spectral channels and not radiometrically calibrated intensities, simplifying the forward model from a full radiative transfer model to a vibrational–rotational band model. It is shown that the derived temperature should be interpreted as a column-integrated property as opposed to a temperature at a specified altitude without utilization of a priori information of the thermospheric temperature profile. The two-channel-ratio approach is demonstrated using NASA GOLD Level 1C disk emission data for the period of 2–8 November 2018 during which a moderate geomagnetic storm has occurred. Due to the lack of independent thermospheric temperature observations, the efficacy of the approach is validated through comparisons of the column-integrated temperature derived from GOLD Level 1C data with the GOLD Level 2 temperature product as well as temperatures from first principle and empirical models. The storm-time thermospheric response manifested in the column-integrated temperature is also shown to corroborate well with hemispherically integrated Joule heating rates, ESA SWARM mass density at 460 km, and GOLD Level 2 column O/N2 ratio. 
    more » « less