- Award ID(s):
- 1451887
- PAR ID:
- 10140637
- Date Published:
- Journal Name:
- J. Mater. Chem. A
- Volume:
- 5
- Issue:
- 39
- ISSN:
- 2050-7488
- Page Range / eLocation ID:
- 20860 to 20866
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Membranes used for desalination still face challenges during operation. One of these challenges is the buildup of salt ions at the membrane surface. This is known as concentration polarization, and it has a negative effect on membrane water permeance and salt rejection. In an attempt to decrease concentration polarization, a line-and-groove nanopattern was applied to a nanofiltration (NF) membrane. Aqueous sodium sulfate (Na2SO4) solutions were used to test the rejection and permeance of both pristine and patterned membranes. It was found that the nanopatterns did not reduce but increased the concentration polarization at the membrane surface. Based on these studies, different pattern shapes and sizes should be investigated to gain a fundamental understanding of the influence of pattern size and shape on concentration polarization.more » « less
-
null (Ed.)Over the past decade, the trade of counterfeit goods has increased. This has been enabled by advancements in low-cost digital printing methods (e.g., inkjet and laserjet) that are an asset for counterfeit production methods. However, each printing method produces characteristic printed features that can be used to identify not only the printing method, but also, uniquely identify the specific make and model of printer. This knowledge can be used for determination of whether or not the analyzed item is counterfeit. During the first phase of this research, chemical and physical analyses were performed on printed documents and ink samples for two types of digital printing: inkjet and laserjet. The results showed that it is possible to identify the digital method used to print a document by its unique features. Physical analysis revealed that the laserjet prints have a higher image quality characterized by sharper feature edge quality, brighter image area, and a thicker ink layer (10 micron average thickness) than in inkjet documents. Chemical analysis showed that the inkjet and laserjet inks could easily be distinguished by identifying the various ink components. Ink jet inks included (among others) water, ethylene glycol while laserjet inks presented styrene, methacrylate, and sulfide compounds.more » « less
-
Graphene oxide/polymer composite water filtration membranes were developed via coalescence of graphene oxide (GO) stabilized Pickering emulsions around a porosity-generating polymer. Triptycene poly(ether ether sulfone)-CH2NH2:HCl polymer interacts with the GO at the water−oil interface, resulting in stable Pickering emulsions. When they are deposited and dried on polytetrafluoroethylene substrate, the emulsions fuse to form a continuous GO/polymer composite membrane. X-ray diffraction and scanning electron microscopy demonstrate that the intersheet spacing and thickness of the membranes increased with increasing polymer concentration, confirming the polymer as the spacer between the GO sheets. The water filtration capability of the composite membranes was tested by removing Rose Bengal from water, mimicking separations of weak black liquor waste. The composite membrane achieved 65% rejection and 2500 g m−2 h−1 bar−1. With high polymer and GO loading, composite membranes give superior rejection and permeance performance when compared with a GO membrane. This methodology for fabrication membranes via GO/polymer Pickering emulsions produces membranes with a homogeneous morphology and robust chemical separation strength.more » « less
-
Abstract Despite significant progress in solution‐processing of 2D materials, it remains challenging to reliably print high‐performance semiconducting channels that can be efficiently modulated in a field‐effect transistor (FET). Herein, electrochemically exfoliated MoS2nanosheets are inkjet‐printed into ultrathin semiconducting channels, resulting in high on/off current ratios up to 103. The reported printing strategy is reliable and general for thin film channel fabrication even in the presence of the ubiquitous coffee‐ring effect. Statistical modeling analysis on the printed pattern profiles suggests that a spaced parallel printing approach can overcome the coffee‐ring effect during inkjet printing, resulting in uniform 2D flake percolation networks. The uniformity of the printed features allows the MoS2channel to be hundreds of micrometers long, which easily accommodates the typical inkjet printing resolution of tens of micrometers, thereby enabling fully printed FETs. As a proof of concept, FET water sensors are demonstrated using printed MoS2as the FET channel, and printed graphene as the electrodes and the sensing area. After functionalization of the sensing area, the printed water sensor shows a selective response to Pb2+in water down to 2 ppb. This work paves the way for additive nanomanufacturing of FET‐based sensors and related devices using 2D nanomaterials.
-
null (Ed.)Polymeric membranes for separation of pharmaceutical intermediates/products by organic solvent nanofiltration (OSN) have to be highly resistant to many organic solvents including high-boiling polar aprotic ones, e.g., N- methyl-2-pyrollidone (NMP), dimethylsulfoxide (DMSO), dimethylformamide (DMF). Unless cross-linked, few polymers resist swelling or dissolution in such solvents; however particular perfluoropolymers are resistant to almost all solvents except perfluorosolvents. One such polymer, designated AHP1, a glassy amorphous hydrophobic perfluorinated polymer, has been studied here. Additional perfluoropolymers studied here are hydrophilically modified (HMP2 and HMP3) versions to enhance the flux of polar aprotic solvents. OSN performances of three types of membranes including the hydrophilically modified ones were studied via solvent flux and solute rejection at pressures up to 5000 kPa. The solutes were four active pharmaceutical ingredients (APIs) or pharmaceutical intermediates having molecular weights (MWs) between 432 and 809 Da and three dyes, Oil Blue N (378 Da), Sudan Black B (456 Da), Brilliant Blue R (826 Da). Solvents used were: ethyl acetate, toluene, n- heptane, iso-octane, DMSO, tetrahydrofuran (THF), DMF, acetone, NMP, methanol. Test cells included stirred cells and tangential flow cells. Pure solvent fluxes through three membrane types were characterized using a particular parameter employing various solvent properties. All three membranes achieved high solute rejections around 91–98% at ambient temperatures. HMP2 membrane achieved 95% solute rejection for an API (809 Da) in DMSO at a high temperature, 75 ◦C. A two-stage simulated nanofiltration process achieved 99%+ rejection of a pharmaceutical intermediate (MW, 432 Da) in 75v% NMP-25v% ethyl acetate solution.more » « less