skip to main content


Title: Printing ultrathin graphene oxide nanofiltration membranes for water purification
We demonstrated for the first time that inkjet printing can be a low-cost, easy, fast, and scalable method for depositing ultrathin (7.5–60 nm) uniform graphene oxide (GO) nanofiltration membranes on polymeric supports for highly effective water purification. A large area (15 × 15 cm 2 ) GO nanofiltration membrane was printed successfully on a modified polyacrylonitrile (M-PAN) support. Water permeance and rejection of small organic molecules (<1 nm, charged and uncharged) of printed GO membranes can be adjusted by controlling the GO “ink” concentration and/or printing time. Compared with commercial polymeric nanofiltration membranes, printed GO membranes, after optimization, showed approximately one order of magnitude higher water permeance and much higher rejection (>95%) of small organic molecules. Printed GO membranes also showed excellent performance in removing pharmaceutical contaminants, with ∼95% rejection and <10% water permeance decline over extended-period permeation testing. We believe that inkjet printing could be an effective method for preparing ultrathin GO membranes for effective water nanofiltration purification.  more » « less
Award ID(s):
1451887
NSF-PAR ID:
10140637
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
J. Mater. Chem. A
Volume:
5
Issue:
39
ISSN:
2050-7488
Page Range / eLocation ID:
20860 to 20866
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Nanoparticle (NP) additions can substantially improve the performance of reverse osmosis and nanofiltration polyamide (PA) membranes. However, the relative impacts of leading additives are poorly understood. In this study, we compare the effects ofTiO2andSiO2NPs as nanofillers in PA membranes with respect to permeate flux and the rejection of organic matter (OM) and salts. Thin‐film nanocomposite (TFN) PA membranes were fabricated using similarly sizedTiO215 nm andSiO2(10 – 20 nm)NPs, introduced at four different NP concentrations (0.01, 0.05, 0.2, and 0.5% w/v). Compared with PA membranes fabricated without NPs, membranes fabricated with nanofillers improved membranes hydrophilicity, membrane porosity, and consequently the permeability. Permeability was increased by 24 and 58% with the addition ofTiO2andSiO2, respectively. Rejection performance and fouling behavior of the membranes were examined with salt (MgSO4andNaCl) and OM (humic acid [HA] and tannic acid [TA]). The addition ofTiO2andSiO2nanofillers to the PA membranes improved the permeability of these membranes and also increased the rejection ofMgSO4, especially for TiO2membranes. The addition ofTiO2andSiO2to the membranes exhibited a higher flux and lower flux decline ratio than the control membrane in OM solution filtration. TFN membranes' HA and TA rejections were at least 77 and 71%, respectively. The surface change properties of NPs appear to play a dominant role in determining their effects as nanofillers in the composite membrane matrix through a balance of changes produced in membrane pore size and membrane hydrophilicity.

     
    more » « less
  2. null (Ed.)
    Polymeric membranes for separation of pharmaceutical intermediates/products by organic solvent nanofiltration (OSN) have to be highly resistant to many organic solvents including high-boiling polar aprotic ones, e.g., N- methyl-2-pyrollidone (NMP), dimethylsulfoxide (DMSO), dimethylformamide (DMF). Unless cross-linked, few polymers resist swelling or dissolution in such solvents; however particular perfluoropolymers are resistant to almost all solvents except perfluorosolvents. One such polymer, designated AHP1, a glassy amorphous hydrophobic perfluorinated polymer, has been studied here. Additional perfluoropolymers studied here are hydrophilically modified (HMP2 and HMP3) versions to enhance the flux of polar aprotic solvents. OSN performances of three types of membranes including the hydrophilically modified ones were studied via solvent flux and solute rejection at pressures up to 5000 kPa. The solutes were four active pharmaceutical ingredients (APIs) or pharmaceutical intermediates having molecular weights (MWs) between 432 and 809 Da and three dyes, Oil Blue N (378 Da), Sudan Black B (456 Da), Brilliant Blue R (826 Da). Solvents used were: ethyl acetate, toluene, n- heptane, iso-octane, DMSO, tetrahydrofuran (THF), DMF, acetone, NMP, methanol. Test cells included stirred cells and tangential flow cells. Pure solvent fluxes through three membrane types were characterized using a particular parameter employing various solvent properties. All three membranes achieved high solute rejections around 91–98% at ambient temperatures. HMP2 membrane achieved 95% solute rejection for an API (809 Da) in DMSO at a high temperature, 75 ◦C. A two-stage simulated nanofiltration process achieved 99%+ rejection of a pharmaceutical intermediate (MW, 432 Da) in 75v% NMP-25v% ethyl acetate solution. 
    more » « less
  3. Oxygen plasma treatment of polydimethylsiloxane (PDMS) induces an ultrathin polyorganosilica (POSi) layer (< 10 nm) on top of a PDMS membrane, leading to excellent H2/gas separation properties and providing a rapid and scalable way to fabricate robust silica membranes compared with conventional high-temperature and time-consuming sol-gel methods. Here, we thoroughly investigate POSi membranes derived from poly(dimethylsiloxane-co-methylhydroxidesiloxane) (poly(DMS-co-MHOS)) containing -SiOH groups that can be more easily converted to silica networks than the -SiCH3 in PDMS. The effect of the polysiloxane structure and plasma treatment conditions (including plasma generating powers, oxygen flowrate, chamber pressure, and treatment time) on the silica chemistry, structure, and H2/CO2 separation properties are systematically determined to derive structure/property relationships. An optimized membrane exhibits H2 permeance of 880 GPU and H2/CO2 selectivity of 67 at 150 ℃, superior to state-of-the-art polymeric membranes. The membrane retains H2/CO2 selectivity as high as 46 when challenged with simulated syngas containing 2.8 mol% water vapor at 150 ℃, demonstrating the potential of these POSi membranes for practical applications. 
    more » « less
  4. Abstract

    Atomically thin membranes comprising nanopores in a 2D material promise to surpass the performance of polymeric membranes in several critical applications, including water purification, chemical and gas separations, and energy harvesting. However, fabrication of membranes with precise pore size distributions that provide exceptionally high selectivity and permeance in a scalable framework remains an outstanding challenge. Circumventing these constraints, here, a platform technology is developed that harnesses the ability of oppositely charged polyelectrolytes to self‐assemble preferentially across larger, relatively leaky atomically thin nanopores by exploiting the lower steric hindrance of such larger pores to molecular interactions across the pores. By selectively tightening the pore size distribution in this manner, self‐assembly of oppositely charged polyelectrolytes simultaneously introduced on opposite sides of nanoporous graphene membranes is demonstrated to discriminate between nanopores to seal non‐selective transport channels, while minimally compromising smaller, water‐selective pores, thereby remarkably attenuating solute leakage. This improved membrane selectivity enables desalination across centimeter‐scale nanoporous graphene with 99.7% and >90% rejection of MgSO4and NaCl, respectively, under forward osmosis. These findings provide a versatile strategy to augment the performance of nanoporous atomically thin membranes and present intriguing possibilities of controlling reactions across 2D materials via exclusive exploitation of pore size‐dependent intermolecular interactions.

     
    more » « less
  5. Abstract

    Direct synthesis of graphene with well‐defined nanoscale pores over large areas can transform the fabrication of nanoporous atomically thin membranes (NATMs) and greatly enhance their potential for practical applications. However, scalable bottom‐up synthesis of continuous sheets of nanoporous graphene that maintain integrity over large areas has not been demonstrated. Here, it is shown that a simple reduction in temperature during chemical vapor deposition (CVD) on Cu induces in‐situ formation of nanoscale defects (≤2–3 nm) in the graphene lattice, enabling direct and scalable synthesis of nanoporous monolayer graphene. By solution‐casting of hierarchically porous polyether sulfone supports on the as‐grown nanoporous CVD graphene, large‐area (>5 cm2) NATMs for dialysis applications are demonstrated. The synthesized NATMs show size‐selective diffusive transport and effective separation of small molecules and salts from a model protein, with ≈2–100× increase in permeance along with selectivity better than or comparable to state‐of‐the‐art commercially available polymeric dialysis membranes. The membranes constitute the largest fully functional NATMs fabricated via bottom‐up nanopore formation, and can be easily scaled up to larger sizes permitted by CVD synthesis. The results highlight synergistic benefits in blending traditional membrane casting with bottom‐up pore creation during graphene CVD for advancing NATMs toward practical applications.

     
    more » « less