skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Variable transmission optical filter based on an actuated origami structure

A variable transmission thin film for visible light is proposed based on a mechanically actuated origami structure coated with metallic nanoparticles. The transmissivity can be tuned continuously from 0 to><#comment/>90%<#comment/>for unpolarized incident light. Power is only required for switching and is not necessary to maintain the desired transmittance state. The asymmetric metal nanorods create two distinct plasmon resonances. Controlling the orientation of the nanorods with respect to the direction of the incident light changes the optical transmittance. The switching speed is only limited by the mechanical actuation and not by the optical response of the materials. The applicability of the proposed film for smart glass applications is investigated. Good image transmission clarity with minimal distortion is shown.

 
more » « less
PAR ID:
10140677
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Applied Optics
Volume:
59
Issue:
10
ISSN:
1559-128X; APOPAI
Format(s):
Medium: X Size: Article No. 2963
Size(s):
Article No. 2963
Sponsoring Org:
National Science Foundation
More Like this
  1. For easy manipulation of polarization states of light for applications in communications, imaging, and information processing, an efficient mechanism is desired for rotating light polarization with a minimum interaction length. Here, we report giant polarization rotations for terahertz (THz) electromagnetic waves in ultrathin (∼<#comment/>45nm), high-density films of aligned carbon nanotubes. We observed polarization rotations of up to∼<#comment/>20∘<#comment/>and∼<#comment/>110∘<#comment/>for transmitted and reflected THz pulses, respectively. The amount of polarization rotation was a sensitive function of the angle between the incident THz polarization and the nanotube alignment direction, exhibiting a “magic” angle at which the total rotation through transmission and reflection becomes exactly 90°. Our model quantitatively explains these giant rotations as a result of extremely anisotropic optical constants, demonstrating that aligned carbon nanotubes promise ultrathin, broadband, and tunable THz polarization devices.

     
    more » « less
  2. Metasurfaces with dynamic optical performance have the potential to enable a broad range of applications. We computationally investigate the potential of dielectric Huygens metasurfaces, supporting both electric and magnetic dipole resonances, as a candidate platform for dynamic tuning. The asymmetric response of the two dipole resonances to changes in geometric and material parameters, and the potential for separate control of amplitude and phase, is analyzed. A review of dynamic materials, and their promise and limitations for use in dynamic Huygens metasurfaces, is discussed. Vanadium dioxide (VO2) is recognized as a singularly interesting material, due to its variable refractive index and optical absorption in response to several stimuli. Transmitted phase modulation of±<#comment/>π<#comment/>is computationally demonstrated as a function of decaying resonance utilizing only the first 5% of the insulator-metal transition, corresponding to a temperature change of<<#comment/>10∘<#comment/>C. As another case study utilizing asymmetric resonance tuning in response to changing incidence angle, phase modulation (2π<#comment/>range for reflected light and><#comment/>1.5π<#comment/>for transmitted light) and amplitude modulation (fromR=1toT=1) are demonstrated using a simple silicon metasurface with varying incident angle within a range of∼<#comment/>15∘<#comment/>on two axes. A promising implementation within a micro-electromechanical system (MEMS)-based spatial light modulator, similar to conventional digital micromirror devices, is discussed.

     
    more » « less
  3. We show that for spherical particles greater than ca. 5 µm, the differential scattering cross section is only weakly dependent on the real and imaginary parts of the refractive index (m=n+iκ<#comment/>) when integrated over angle ranges near37±<#comment/>5∘<#comment/>and115±<#comment/>5∘<#comment/>, respectively. With this knowledge, we set up an arrangement that collects scattered light in the ranges37±<#comment/>5∘<#comment/>,115±<#comment/>5∘<#comment/>, and80±<#comment/>5∘<#comment/>. The weak functionality on refractive index for the first two angle ranges simplifies the inversion of scattering to the particle properties of diameter and the real and imaginary refractive indices. Our setup also uses a diamond-shaped incident beam profile that allows us to determine when a particle went through the exact center of the beam. Application of our setup to droplets of an absorbing liquid successfully determined the diameter and complex refractive index to accuracies ranging from a few to ten percent. Comparisons to simulated data derived from the Mie equations yielded similar results.

     
    more » « less
  4. In this Letter, the electron-blocking-layer (EBL)-free AlGaN ultraviolet (UV) light-emitting diodes (LEDs) using a strip-in-a-barrier structure have been proposed. The quantum barrier (QB) structures are systematically engineered by integrating a 1 nm intrinsicAlxGa(1−<#comment/>x)Nstrip into the middle of QBs. The resulted structures exhibit significantly reduced electron leakage and improved hole injection into the active region, thus generating higher carrier radiative recombination. Our study shows that the proposed structure improves radiative recombination by∼<#comment/>220%<#comment/>, reduces electron leakage by∼<#comment/>11times, and enhances optical power by∼<#comment/>225%<#comment/>at 60 mA current injection compared to a conventional AlGaN EBL LED structure. Moreover, the EBL-free strip-in-a-barrier UV LED records the maximum internal quantum efficiency (IQE) of∼<#comment/>61.5%<#comment/>which is∼<#comment/>72%<#comment/>higher, and IQE droop is∼<#comment/>12.4%<#comment/>, which is∼<#comment/>333%<#comment/>less compared to the conventional AlGaN EBL LED structure at∼<#comment/>284.5nmwavelength. Hence, the proposed EBL-free AlGaN LED is the potential solution to enhance the optical power and produce highly efficient UV emitters.

     
    more » « less
  5. In this paper a photovoltaic system is proposed that achieves high energy yield by integrating bifacial silicon cells into a spectrum-splitting module. Spectrum splitting is accomplished using volume holographic optical elements to spectrally divide sunlight onto an array of photovoltaic cells with different bandgap energies. Light that is reflected from the ground surface onto the rear side of the module is converted by the bifacial silicon cells. The energy yield of the system is optimized by tuning the volume holographic element parameters, such as film thickness, index modulation, and construction point source positions. An example is presented for utility-scale illumination parameters in Tucson, Arizona, that attains an energy yield of1010kw⋅<#comment/>hryr⋅<#comment/>m2, which is 32.8% of the incident solar insolation.

     
    more » « less