skip to main content


Title: Differential Privacy on Finite Computers
We consider the problem of designing and analyzing differentially private algorithms that can be implemented on discrete models of computation in strict polynomial time, motivated by known attacks on floating point implementations of real-arithmetic differentially private algorithms (Mironov, CCS 2012) and the potential for timing attacks on expected polynomial-time algorithms. As a case study, we examine the basic problem of approximating the histogram of a categorical dataset over a possibly large data universe X. The classic Laplace Mechanism (Dwork, McSherry, Nissim, Smith, TCC 2006 and J. Privacy \& Confidentiality 2017) does not satisfy our requirements, as it is based on real arithmetic, and natural discrete analogues, such as the Geometric Mechanism (Ghosh, Roughgarden, Sundarajan, STOC 2009 and SICOMP 2012), take time at least linear in |X|, which can be exponential in the bit length of the input.   In this paper, we provide strict polynomial-time discrete algorithms for approximate histograms whose simultaneous accuracy (the maximum error over all bins) matches that of the Laplace Mechanism up to constant factors, while retaining the same (pure) differential privacy guarantee. One of our algorithms produces a sparse histogram as output. Its ``"per-bin accuracy" (the error on individual bins) is worse than that of the Laplace Mechanism by a factor of log|X|, but we prove a lower bound showing that this is necessary for any algorithm that produces a sparse histogram. A second algorithm avoids this lower bound, and matches the per-bin accuracy of the Laplace Mechanism, by producing a compact and efficiently computable representation of a dense histogram; it is based on an (n+1)-wise independent implementation of an appropriately clamped version of the Discrete Geometric Mechanism.  more » « less
Award ID(s):
1565387
NSF-PAR ID:
10140874
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Privacy and Confidentiality
Volume:
9
Issue:
2
ISSN:
2575-8527
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Differential privacy has emerged as a popular model to provably limit privacy risks associated with a given data release. However releasing high dimensional synthetic data under differential privacy remains a challenging problem. In this paper, we study the problem of releasing synthetic data in the form of a high dimensional histogram under the constraint of differential privacy.We develop an $(\epsilon, \delta)$-differentially private categorical data synthesizer called \emph{Stability Based Hashed Gibbs Sampler} (SBHG). SBHG works by combining a stability based sparse histogram estimation algorithm with Gibbs sampling and feature selection to approximate the empirical joint distribution of a discrete dataset. SBHG offers a competitive alternative to state-of-the art synthetic data generators while preserving the sparsity structure of the original dataset, which leads to improved statistical utility as illustrated on simulated data. Finally, to study the utility of the resulting synthetic data sets generated by SBHG, we also perform logistic regression using the synthetic datasets and compare the classification accuracy with those from using the original dataset. 
    more » « less
  2. Differential Privacy (DP) formalizes privacy in mathematical terms and provides a robust concept for privacy protection. DIfferentially Private Data Synthesis (DIPS) techniques produce and release synthetic individual-level data in the DP framework. One key challenge to develop DIPS methods is the preservation of the statistical utility of synthetic data, especially in high-dimensional settings. We propose a new DIPS approach, STatistical Election to Partition Sequentially (STEPS) that partitions data by attributes according to their importance ranks according to either a practical or statistical importance measure. STEPS aims to achieve better original information preservation for the attributes with higher importance ranks and produce thus more useful synthetic data overall. We present an algorithm to implement the STEPS procedure and employ the privacy budget composability to ensure the overall privacy cost is controlled at the pre-specified value. We apply the STEPS procedure to both simulated data and the 2000–2012 Current Population Survey youth voter data. The results suggest STEPS can better preserve the population-level information and the original information for some analyses compared to PrivBayes, a modified Uniform histogram approach, and the flat Laplace sanitizer. 
    more » « less
  3. Many differentially private algorithms for answering database queries involve a step that reconstructs a discrete data distribution from noisy measurements. This provides consistent query answers and reduces error, but often requires space that grows exponentially with dimension. Private-PGM is a recent approach that uses graphical models to represent the data distribution, with complexity proportional to that of exact marginal inference in a graphical model with structure determined by the co-occurrence of variables in the noisy measurements. Private-PGM is highly scalable for sparse measurements, but may fail to run in high dimensions with dense measurements. We overcome the main scalability limitation of Private-PGM through a principled approach that relaxes consistency constraints in the estimation objective. Our new approach works with many existing private query answering algorithms and improves scalability or accuracy with no privacy cost. 
    more » « less
  4. Etessami, Kousha ; Feige, Uriel ; Puppis, Gabriele (Ed.)
    Many deployments of differential privacy in industry are in the local model, where each party releases its private information via a differentially private randomizer. We study triangle counting in the noninteractive and interactive local model with edge differential privacy (that, intuitively, requires that the outputs of the algorithm on graphs that differ in one edge be indistinguishable). In this model, each party’s local view consists of the adjacency list of one vertex. In the noninteractive model, we prove that additive Ω(n²) error is necessary, where n is the number of nodes. This lower bound is our main technical contribution. It uses a reconstruction attack with a new class of linear queries and a novel mix-and-match strategy of running the local randomizers with different completions of their adjacency lists. It matches the additive error of the algorithm based on Randomized Response, proposed by Imola, Murakami and Chaudhuri (USENIX2021) and analyzed by Imola, Murakami and Chaudhuri (CCS2022) for constant ε. We use a different postprocessing of Randomized Response and provide tight bounds on the variance of the resulting algorithm. In the interactive setting, we prove a lower bound of Ω(n^{3/2}) on the additive error. Previously, no hardness results were known for interactive, edge-private algorithms in the local model, except for those that follow trivially from the results for the central model. Our work significantly improves on the state of the art in differentially private graph analysis in the local model. 
    more » « less
  5. Many deployments of differential privacy in industry are in the local model, where each party releases its private information via a differentially private randomizer. We study triangle counting in the noninteractive and interactive local model with edge differential privacy (that, intuitively, requires that the outputs of the algorithm on graphs that differ in one edge be indistinguishable). In this model, each party’s local view consists of the adjacency list of one vertex. In the noninteractive model, we prove that additive Ω(n^2) error is necessary, where n is the number of nodes. This lower bound is our main technical contribution. It uses a reconstruction attack with a new class of linear queries and a novel mix-and-match strategy of running the local randomizers with different completions of their adjacency lists. It matches the additive error of the algorithm based on Randomized Response, proposed by Imola, Murakami and Chaudhuri (USENIX2021) and analyzed by Imola, Murakami and Chaudhuri (CCS2022) for constant ε. We use a different postprocessing of Randomized Response and provide tight bounds on the variance of the resulting algorithm. In the interactive setting, we prove a lower bound of Ω(n3/2) on the additive error. Previously, no hardness results were known for interactive, edge-private algorithms in the local model, except for those that follow trivially from the results for the central model. Our work significantly improves on the state of the art in differentially private graph analysis in the local model. 
    more » « less