Differential privacy mechanisms such as the Gaussian or Laplace mechanism have been widely used in data analytics for preserving individual privacy. However, they are mostly designed for continuous outputs and are unsuitable for scenarios where discrete values are necessary. Although various quantization mechanisms were proposed recently to generate discrete outputs under differential privacy, the outcomes are either biased or have an inferior accuracy-privacy trade-off. In this paper, we propose a family of quantization mechanisms that is unbiased and differentially private. It has a high degree of freedom and we show that some existing mechanisms can be considered as special cases of ours. To find the optimal mechanism, we formulate a linear optimization that can be solved efficiently using linear programming tools. Experiments show that our proposed mechanism can attain a better privacy-accuracy trade-off compared to baselines.
more »
« less
Differential Privacy on Finite Computers
We consider the problem of designing and analyzing differentially private algorithms that can be implemented on discrete models of computation in strict polynomial time, motivated by known attacks on floating point implementations of real-arithmetic differentially private algorithms (Mironov, CCS 2012) and the potential for timing attacks on expected polynomial-time algorithms. As a case study, we examine the basic problem of approximating the histogram of a categorical dataset over a possibly large data universe X. The classic Laplace Mechanism (Dwork, McSherry, Nissim, Smith, TCC 2006 and J. Privacy \& Confidentiality 2017) does not satisfy our requirements, as it is based on real arithmetic, and natural discrete analogues, such as the Geometric Mechanism (Ghosh, Roughgarden, Sundarajan, STOC 2009 and SICOMP 2012), take time at least linear in |X|, which can be exponential in the bit length of the input. In this paper, we provide strict polynomial-time discrete algorithms for approximate histograms whose simultaneous accuracy (the maximum error over all bins) matches that of the Laplace Mechanism up to constant factors, while retaining the same (pure) differential privacy guarantee. One of our algorithms produces a sparse histogram as output. Its ``"per-bin accuracy" (the error on individual bins) is worse than that of the Laplace Mechanism by a factor of log|X|, but we prove a lower bound showing that this is necessary for any algorithm that produces a sparse histogram. A second algorithm avoids this lower bound, and matches the per-bin accuracy of the Laplace Mechanism, by producing a compact and efficiently computable representation of a dense histogram; it is based on an (n+1)-wise independent implementation of an appropriately clamped version of the Discrete Geometric Mechanism.
more »
« less
- Award ID(s):
- 1565387
- PAR ID:
- 10140874
- Date Published:
- Journal Name:
- Journal of Privacy and Confidentiality
- Volume:
- 9
- Issue:
- 2
- ISSN:
- 2575-8527
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Differential privacy has emerged as a popular model to provably limit privacy risks associated with a given data release. However releasing high dimensional synthetic data under differential privacy remains a challenging problem. In this paper, we study the problem of releasing synthetic data in the form of a high dimensional histogram under the constraint of differential privacy.We develop an $$(\epsilon, \delta)$$-differentially private categorical data synthesizer called \emph{Stability Based Hashed Gibbs Sampler} (SBHG). SBHG works by combining a stability based sparse histogram estimation algorithm with Gibbs sampling and feature selection to approximate the empirical joint distribution of a discrete dataset. SBHG offers a competitive alternative to state-of-the art synthetic data generators while preserving the sparsity structure of the original dataset, which leads to improved statistical utility as illustrated on simulated data. Finally, to study the utility of the resulting synthetic data sets generated by SBHG, we also perform logistic regression using the synthetic datasets and compare the classification accuracy with those from using the original dataset.more » « less
-
We consider the setting where a user with sensitive features wishes to obtain a recommendation from a server in a differentially private fashion. We propose a ``multi-selection'' architecture where the server can send back multiple recommendations and the user chooses one from these that matches best with their private features. When the user feature is one-dimensional -- on an infinite line -- and the accuracy measure is defined w.r.t some increasing function 𝔥(.) of the distance on the line, we precisely characterize the optimal mechanism that satisfies differential privacy. The specification of the optimal mechanism includes both the distribution of the noise that the user adds to its private value, and the algorithm used by the server to determine the set of results to send back as a response and further show that Laplace is an optimal noise distribution. We further show that this optimal mechanism results in an error that is inversely proportional to the number of results returned when the function 𝔥(.) is the identity function.more » « less
-
Bun, Mark (Ed.)We consider the setting where a user with sensitive features wishes to obtain a recommendation from a server in a differentially private fashion. We propose a "multi-selection" architecture where the server can send back multiple recommendations and the user chooses one from these that matches best with their private features. When the user feature is one-dimensional - on an infinite line - and the accuracy measure is defined w.r.t some increasing function 𝔥(.) of the distance on the line, we precisely characterize the optimal mechanism that satisfies differential privacy. The specification of the optimal mechanism includes both the distribution of the noise that the user adds to its private value, and the algorithm used by the server to determine the set of results to send back as a response. We show that Laplace is an optimal noise distribution in this setting. Furthermore, we show that this optimal mechanism results in an error that is inversely proportional to the number of results returned when the function 𝔥(.) is the identity function.more » « less
-
null (Ed.)Various differentially private algorithms instantiate the exponential mechanism, and require sampling from the distribution exp(−f) for a suitable function f. When the domain of the distribution is high-dimensional, this sampling can be challenging. Using heuristic sampling schemes such as Gibbs sampling does not necessarily lead to provable privacy. When f is convex, techniques from log-concave sampling lead to polynomial-time algorithms, albeit with large polynomials. Langevin dynamics-based algorithms offer much faster alternatives under some distance measures such as statistical distance. In this work, we establish rapid convergence for these algorithms under distance measures more suitable for differential privacy. For smooth, strongly-convex f, we give the first results proving convergence in R\'enyi divergence. This gives us fast differentially private algorithms for such f. Our techniques and simple and generic and apply also to underdamped Langevin dynamics.more » « less
An official website of the United States government

