skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lower bounds for data structures with space close to maximum imply circuit lower bounds
Award ID(s):
1813930
PAR ID:
10141154
Author(s) / Creator(s):
Date Published:
Journal Name:
Theory of Computing
Volume:
15
Issue:
1
ISSN:
1557-2862
Page Range / eLocation ID:
1 to 9
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Let$$p_{1},\ldots ,p_{n}$$ p 1 , , p n be a set of points in the unit square and let$$T_{1},\ldots ,T_{n}$$ T 1 , , T n be a set of$$\delta $$ δ -tubes such that$$T_{j}$$ T j passes through$$p_{j}$$ p j . We prove a lower bound for the number of incidences between the points and tubes under a natural regularity condition (similar to Frostman regularity). As a consequence, we show that in any configuration of points$$p_{1},\ldots , p_{n} \in [0,1]^{2}$$ p 1 , , p n [ 0 , 1 ] 2 along with a line$$\ell _{j}$$ j through each point$$p_{j}$$ p j , there exist$$j\neq k$$ j k for which$$d(p_{j}, \ell _{k}) \lesssim n^{-2/3+o(1)}$$ d ( p j , k ) n 2 / 3 + o ( 1 ) . It follows from the latter result that any set of$$n$$ n points in the unit square contains three points forming a triangle of area at most$$n^{-7/6+o(1)}$$ n 7 / 6 + o ( 1 ) . This new upper bound for Heilbronn’s triangle problem attains the high-low limit established in our previous work arXiv:2305.18253. 
    more » « less
  2. The stabilizer rank of a quantum state ψ is the minimal r such that | ψ ⟩ = ∑ j = 1 r c j | φ j ⟩ for c j ∈ C and stabilizer states φ j . The running time of several classical simulation methods for quantum circuits is determined by the stabilizer rank of the n -th tensor power of single-qubit magic states.We prove a lower bound of Ω ( n ) on the stabilizer rank of such states, improving a previous lower bound of Ω ( n ) of Bravyi, Smith and Smolin \cite{BSS16}. Further, we prove that for a sufficiently small constant δ , the stabilizer rank of any state which is δ -close to those states is Ω ( n / log ⁡ n ) . This is the first non-trivial lower bound for approximate stabilizer rank.Our techniques rely on the representation of stabilizer states as quadratic functions over affine subspaces of F 2 n , and we use tools from analysis of boolean functions and complexity theory. The proof of the first result involves a careful analysis of directional derivatives of quadratic polynomials, whereas the proof of the second result uses Razborov-Smolensky low degree polynomial approximations and correlation bounds against the majority function. 
    more » « less