Flowpath and retention of snowmelt in an ice-covered arctic lake: Flowpath and retention of snowmelt
- Award ID(s):
- 1204267
- PAR ID:
- 10141356
- Date Published:
- Journal Name:
- Limnology and Oceanography
- Volume:
- 62
- Issue:
- 5
- ISSN:
- 0024-3590
- Page Range / eLocation ID:
- 2023 to 2044
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Caribou (Rangifer tarandus) undergo exceptionally large, annual synchronized migrations of thousands of kilometers, triggered by their shared environmental stimuli. The proximate triggers of those migrations remain mysterious, though snow characteristics play an important role due to their influence on the mechanics of locomotion. We investigate whether the snow melt–refreeze status relates to caribou movement, using previously collected Global Positioning System (GPS) caribou collar data. We analyzed 117 individual female caribou with >30,000 observations between 2007 and 2016 from the Bathurst herd in Northern Canada. We used a hierarchical model to estimate the beginning, duration, and end of spring migration and compared these statistics against snow pack melt characteristics derived from 37 GHz vertically polarized (37V GHz) Calibrated Enhanced-Resolution Brightness Temperatures (CETB) at 3.125 km resolution. The timing of migration for Bathurst caribou generally tracked the snowmelt onset. The start of migration was closely linked to the main melt onset in the wintering areas, occurring on average 2.6 days later (range −1.9 to 8.4, se 0.28, n = 10). The weighted linear regression was also highly significant (p-value = 0.002, R2=0.717). The relationship between migration arrival times and the main melt onset on the calving grounds (R2 = 0.688, p-value = 0.003), however, had a considerably more variable lag (mean 13.3 d, se 0.67, range 3.1–20.4). No migrations ended before the main melt onset at the calving grounds. Thawing conditions may provide a trigger for migration or favorable conditions that increase animal mobility, and suggest that the snow properties are more important than snow presence. Further work is needed to understand how widespread this is and why there is such a relationship.more » « less
-
Daily stream flow and groundwater dynamics in forested subalpine catchments during spring are to a large extent controlled by hydrological processes that respond to the day-night energy cycle. Diurnal snowmelt and transpiration events combine to induce pressure variations in the soil water storage that are propagated to the stream. In headwater catchments these pressure variations can account for a significant amount of the total pressure in the system and control the magnitude, duration, and timing of stream inflow pulses at daily scales, especially in low flow systems. Changes in the radiative balance at the top of the snowpack can alter the diurnal hydrologic dynamics of the hillslope-stream system with potential ecological and management consequences. We present a detailed hourly dataset of atmospheric, hillslope, and streamflow measurements collected during one melt season from a semi-alpine headwater catchment in western Montana, US. We use this dataset to investigate the timing, pattern, and linkages among snowmelt-dominated hydrologic processes and assess the role of the snowpack, transpiration, and hillslopes in mediating daily movements of water from the top of the snowpack to local stream systems. We found that the amount of snowpack cold content accumulated during the night, which must be overcome every morning before snowmelt resumes, delayed water recharge inputs by up to 3 hours early in the melt season. These delays were further exacerbated by multi-day storms (cold fronts), which resulted in significant depletions in the soil and stream storages. We also found that both diurnal snowmelt and transpiration signals are present in the diurnal soil and stream storage fluctuations, although the individual contributions of these processes is difficult to discern. Our analysis showed that the hydrologic response of the snow-hillslope-stream system is highly sensitive to atmospheric drivers at hourly scales, and that variations in atmospheric energy inputs or other stresses are quickly transmitted and alter the intensity, duration and timing of snowmelt pulses and soil water extractions by vegetation, which ultimately drive variations in soil and stream water pressures.more » « less
An official website of the United States government

