Biological supramolecular assemblies, such as phospholipid bilayer membranes, have been used to demonstrate signal processing via short-term synaptic plasticity (STP) in the form of paired pulse facilitation and depression, emulating the brain’s efficiency and flexible cognitive capabilities. However, STP memory in lipid bilayers is volatile and cannot be stored or accessed over relevant periods of time, a key requirement for learning. Using droplet interface bilayers (DIBs) composed of lipids, water and hexadecane, and an electrical stimulation training protocol featuring repetitive sinusoidal voltage cycling, we show that DIBs displaying memcapacitive properties can also exhibit persistent synaptic plasticity in the form of long-term potentiation (LTP) associated with capacitive energy storage in the phospholipid bilayer. The time scales for the physical changes associated with the LTP range between minutes and hours, and are substantially longer than previous STP studies, where stored energy dissipated after only a few seconds. STP behavior is the result of reversible changes in bilayer area and thickness. On the other hand, LTP is the result of additional molecular and structural changes to the zwitterionic lipid headgroups and the dielectric properties of the lipid bilayer that result from the buildup of an increasingly asymmetric charge distribution at the bilayer interfaces.
more »
« less
Cavitation in lipid bilayers poses strict negative pressure stability limit in biological liquids
Biological and technological processes that involve liquids under negative pressure are vulnerable to the formation of cavities. Maximal negative pressures found in plants are around −100 bar, even though cavitation in pure bulk water only occurs at much more negative pressures on the relevant time scales. Here, we investigate the influence of small solutes and lipid bilayers, both constituents of all biological liquids, on the formation of cavities under negative pressures. By combining molecular dynamics simulations with kinetic modeling, we quantify cavitation rates on biologically relevant length and time scales. We find that lipid bilayers, in contrast to small solutes, increase the rate of cavitation, which remains unproblematically low at the pressures found in most plants. Only when the negative pressures approach −100 bar does cavitation occur on biologically relevant time scales. Our results suggest that bilayerbased cavitation is what generally limits the magnitude of negative pressures in liquids that contain lipid bilayers.
more »
« less
- Award ID(s):
- 1754850
- PAR ID:
- 10142224
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences of the United States of America
- ISSN:
- 1091-6490
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Lipid bilayers are supramolecular structures responsible for a range of processes, such as transmembrane transport of ions and solutes, and sorting and replication of genetic materials, to name just a few. Some of these processes are transient and currently, cannot be visualized in real space and time. Here, we developed an approach using 1D, 2D, and 3D Van Hove correlation functions to image collective headgroup dipole motions in zwitterionic phospholipid bilayers. We show that both 2D and 3D spatiotemporal images of headgroup dipoles are consistent with commonly understood dynamic features of fluids. However, analysis of the 1D Van Hove function reveals lateral transient and re-emergent collective dynamics of the headgroup dipoles—occurring at picosecond time scales—that transmit and dissipate heat at longer times, due to relaxation processes. At the same time, the headgroup dipoles also generate membrane surface undulations due a collective tilting of the headgroup dipoles. A continuous intensity band of headgroup dipole spatiotemporal correlations—at nanometer length and nanosecond time scales—indicates that dipoles undergo stretching and squeezing elastic deformations. Importantly, the above mentioned intrinsic headgroup dipole motions can be externally stimulated at GHz-frequency scale, enhancing their flexoelectric and piezoelectric capabilities (i.e., increased conversion efficiency of mechanical energy into electric energy). In conclusion, we discuss how lipid membranes can provide molecular-level insights about biological learning and memory, and as platforms for the development of the next generation of neuromorphic computers.more » « less
-
Characterization and prediction of the interactions between engineered nanoparticles (ENPs), proteins, and biological membranes is critical for advancing applications to nanomedicine and nanomanufacturing while mitigating nanotoxicological risks. In this work, we employ a coarse-grained dissipative particle dynamics (DPD) simulation to investigate the interactions among cytochrome c (CytC), lipid bilayers, and citrate-coated gold nanoparticles (AuNPs). We updated the DPD potential to accurately represent binding potentials between molecules, and validated the model relative to an all-atom representation. The DPD simulations successfully replicate experimental observations: CytC facilitates the binding of citrate-coated AuNPs to lipid bilayers composed of 90% dioleoylphosphatidylcholine (DOPC) mixed with 10% stearoylphosphatidylinositol (SAPI) or 10% tetraoleoyl cardiolipin (TOCL) but not to pure 100% DOPC bilayers. In addition, the simulations reveal nuanced differences in binding preferences between CytC, the lipid bilayers, and the ENP, at a scale that is not presently directly observable in experiments. Specifically, we found that the surface coating of the nanoparticles─viz variations in the CytC surface density─affects the protein-mediated binding with the bilayers. Such a molecular-sensitive result underscores the utility of DPD simulations in simulating complex biological systems.more » « less
-
Phosphatidic acid (PA) is a signaling lipid that is produced enzymatically from phosphatidylcholine (PC), lysophosphatidic acid, or diacylglycerol. Compared to PC, PA lacks a choline moiety on the headgroup, making the headgroup smaller than that of PC and PA, and PA has a net negative charge. Unlike the cylindrical geometry of PC, PA, with its small headgroup relative to the two fatty acid tails, is proposed to support negatively curved membranes. Thus, PA is thought to play a role in a variety of biological processes that involve bending membranes, such as the formation of intraluminal vesicles in multivesicular bodies and membrane fusion. Using supported tubulated lipid bilayers (STuBs), the extent to which PA localizes to curved membranes was determined. STuBs were created via liposome deposition with varying concentrations of NaCl (500 mM to 1 M) on glass to form supported bilayers with connected tubules. The location of fluorescently labeled lipids relative to tubules was determined by imaging with total internal reflection or confocal fluorescence microscopy. The accumulation of various forms of PA (with acyl chains of 16:0-6:0, 16:0-12:0, 18:1-12:0) were compared to PC and the headgroup labeled phosphatidylethanolamine (PE), a lipid that has been shown to accumulate at regions of curvature. PA and PE accumulated more at tubules and led to the formation of more tubules than PC. Using large unilamellar liposomes in a dye-quenching assay, the location of the headgroup labeled PE was determined to be mostly on the outer, positively curved leaflet, whereas the tail labeled PA was located more on the inner, negatively curved leaflet. This study demonstrates that PA localizes to regions of negative curvature in liposomes and supports the formation of curved, tubulated membranes. This is one way that PA could be involved with curvature formation during a variety of cell processes.more » « less
-
Time-resolved fluorescence measurements were used to characterize and quantify solute partitioning into 1,2- dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid vesicles as a function of solute concentration and temperature. The solutes, coumarin 152 (C152) and coumarin 461 (C461), both belong to a family of 7-aminocoumarin dyes that have distinctive fluorescence lifetimes in different solvation environments. The two solutes differ in the 4-position where C152 has a trifluoromethyl group in place of C461’s -CH3 group. In vesicle containing solutions, multiexponential fluorescence decays imply separate solute populations in the aqueous buffer, solvated in the vesicle headgroup region and solvated in the acyl chain bilayer interior, respectively. Fluorescence amplitudes, corrected for differences in radiative rates, are used to calculate absolute partition coefficients and average number of solutes per vesicle as a function of coumarin:lipid ratio and average number of solutes per vesicle. Results show that C152 has an ∼10-fold greater affinity than C461 for lipid bilayers, despite both solutes having similar hydrophobicities as inferred from their log(P) values. Temperature-dependent partitioning data are used to calculate enthalpies and entropies of C152 partitioning as a function of concentration. These values are used to extrapolate to the infinitely dilute limit. Above and below the lipid gel−liquid crystalline temperature, partitioning is exothermic with negative changes in entropy. In the vicinity of the transition temperature, these quantities change sign with ΔHpart becoming endothermic (+70 kJ/mol) and entropically favored (ΔSpart = +240 J/(mol·K)).more » « less
An official website of the United States government

