skip to main content

Title: Pursuit of C–H Borylation Reactions with Non-Precious Heterobimetallic Catalysts: Hypothesis-Driven Variations on a Design Theme
This article presents a retrospective account of our group’s heterobinuclear (NHC)Cu-[MCO] catalyst design concept (NHC = N-heterocyclic carbene, [MCO] = metal carbonyl anion), the discovery of its application towards UV-light-induced dehydrogenative borylation of unactivated arenes, and the subsequent pursuit of thermal reaction conditions through structural modifications of the catalysts. The account highlights advantages of using a hypothesis-driven catalyst design approach that, while often fruitless with regard to the target transformation in this case, nonetheless vastly expanded the set of heterobinuclear catalysts available for other applications. In other words, curiosity-driven research conducted in a rational manner often provides valuable products with unanticipated applications, even if the primary objective is viewed to have failed. 1 Introduction to Heterobinuclear Catalysts for C–H Borylation 2 Pursuit of Thermal Borylation Conditions 3 Catalysts beyond Copper Carbenes 4 Conclusions
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Page Range or eLocation-ID:
125 to 132
Sponsoring Org:
National Science Foundation
More Like this
  1. Formic acid is unique among liquid organic hydrogen carriers (LOHCs), because its dehydrogenation is highly entropically driven. This enables the evolution of high-pressure hydrogen at mild temperatures that is difficult to achieve with other LOHCs, conceptually by releasing the “spring” of energy stored entropically in the liquid carrier. Applications calling for hydrogen-on-demand, such as vehicle filling, require pressurized H 2 . Hydrogen compression dominates the cost for such applications, yet there are very few reports of selective, catalytic dehydrogenation of formic acid at elevated pressure. Herein, we show that homogenous catalysts with various ligand frameworks, including Noyori-type tridentate (PNP, SNS, SNP, SNPO), bidentate chelates (pyridyl)NHC, (pyridyl)phosphine, (pyridyl)sulfonamide, and their metallic precursors, are suitable catalysts for the dehydrogenation of neat formic acid under self-pressurizing conditions. Quite surprisingly, we discovered that their structural differences can be related to performance differences in their respective structural families, with some tolerant or intolerant of pressure and others that are significantly advantaged by pressurized conditions. We further find important roles for H 2 and CO in catalyst activation and speciation. In fact, for certain systems, CO behaves as a healing reagent when trapped in a pressurizing reactor system, enabling extended life from systems that would bemore »otherwise deactivated.« less
  2. Abstract

    Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2conversion into value-added chemicals and fuels, CH4activation into hydrogen, higher hydrocarbons or oxygenates, and NH3synthesis. Other applications are already more established, such as for air pollution control, e.g. volatile organic compound remediation, particulate matter and NOxremoval. In addition, plasma is also very promising for catalyst synthesis and treatment. Plasma catalysis clearly has benefits over ‘conventional’ catalysis, as outlined in the Introduction. However, a better insight into the underlying physical and chemical processes is crucial. This can be obtained by experiments applying diagnostics, studying both the chemical processes at the catalyst surface and the physicochemical mechanisms of plasma-catalyst interactions, as well as by computer modeling. The key challenge is to design cost-effective, highly active and stable catalysts tailored to the plasma environment. Therefore, insight from thermal catalysis as well as electro- and photocatalysis is crucial. All these aspects are covered in this Roadmap paper, written by specialists in their field, presenting the state-of-the-art, the current and future challenges, as well as the advances in science and technology needed to meet these challenges.

  3. Abstract The field of catalytic C–H borylation has grown considerably since its founding, providing a means for the preparation of synthetically versatile organoborane products. Although sp2 C–H borylation methods have found widespread and practical use in organic synthesis, the analogous sp3 C–H borylation reaction remains challenging and has seen limited application. Existing catalysts are often hindered by incomplete consumption of the diboron reagent, poor functional-group tolerance, harsh reaction conditions, and the need for excess or neat substrate. These challenges acutely affect the C–H borylation chemistry of unactivated hydrocarbon substrates, which has lagged in comparison to methods for the C–H borylation of activated compounds. Herein, we discuss recent advances in the sp3 C–H borylation of undirected substrates in the context of two particular challenges: (1) utilization of the diboron reagent and (2) the need for excess or neat substrate. Our recent work on the application of dipyridylarylmethane ligands in sp3 C–H borylation has allowed us to make contributions in this space and has presented an additional ligand scaffold to supplement traditional phenanthroline ligands.
  4. Atomically dispersed and nitrogen-coordinated single Ni sites ( i.e. , NiN x moieties) embedded in partially graphitized carbon have emerged as effective catalysts for CO 2 electroreduction to CO. However, much mystery remains behind the extrinsic and intrinsic factors that govern the overall catalytic CO 2 electrolysis performance. Here, we designed a high-performance single Ni site catalyst through elucidating the structural evolution of NiN x sites during thermal activation and other critical external factors ( e.g. , carbon particle sizes and Ni content) by using Ni–N–C model catalysts derived from nitrogen-doped carbon carbonized from a zeolitic imidazolate framework (ZIF)-8. The N coordination, metal–N bond length, and thermal wrinkling of carbon planes in Ni–N–C catalysts significantly depend on thermal temperatures. Density functional theory (DFT) calculations reveal that the shortening Ni–N bonds in compressively strained NiN 4 sites could intrinsically enhance the CO 2 RR activity and selectivity of the Ni–N–C catalyst. Notably, the NiN 3 active sites with optimal local structures formed at higher temperatures ( e.g. , 1200 °C) are intrinsically more active and CO selective than NiN 4 , providing a new opportunity to design a highly active catalyst via populating NiN 3 sites with increased density. We alsomore »studied how morphological factors such as the carbon host particle size and Ni loading alter the final catalyst structure and performance. The implementation of this catalyst in an industrial flow-cell electrolyzer demonstrated an impressive performance for CO generation, achieving a current density of CO up to 726 mA cm −2 with faradaic efficiency of CO above 90%, representing one of the best catalysts for CO 2 reduction to CO.« less
  5. Abstract

    In this work, we develop a deep neural network model of the reaction rate of oxidative coupling of methane from published high-throughput experimental catalysis data. The neural network is formulated so that the rate model satisfies the plug flow reactor design equation. The model is then employed to understand the variation of reactant and product composition within the reactor for the reference catalyst Mn−Na2WO4/SiO2 at different temperatures and to identify new catalysts and combination of known catalysts that would increase yield and selectivity relative to the reference catalyst. The model revealed that methane is converted in the first half of the catalyst bed while the second part largely consolidates the products (i.e. increases ethylene to ethane ratio). A screening study of ≥ 3400 combinations of pairs of previously studied catalysts of the form M1(M2)1−2M3Ox/support (where M1, M2, and M3 are metals) revealed that a reactor configuration comprising two sequential catalyst beds leads to synergistic effects resulting in increased yield of C2 compared to the reference catalyst at identical conditions and contact time. Finally, an expanded screening study of 7400 combinations (comprising previously studied metals but with several new permutations) revealed multiple catalyst choices with enhanced yields of C2 products.more »This study shows the value of learning a deep neural network model of the instantaneous reaction rate directly from high throughput data and represents a first step in constraining a data-driven reaction model to satisfy domain information.

    « less