skip to main content


Title: Identifying the Sources of Continental Summertime Temperature Variance Using a Diagnostic Model of Land–Atmosphere Interactions

Climate models show that soil moisture and its subseasonal fluctuations have important impacts on the surface latent heat flux, thus regulating surface temperature variations. Using correlations between monthly anomalies in net absorbed radiative fluxes, precipitation, 2-m air temperature, and soil moisture in the ERA-Interim reanalysis and the HadCM3 climate model, we develop a linear diagnostic model to quantify the major effects of land–atmosphere interactions on summertime surface temperature variability. The spatial patterns in 2-m air temperature and soil moisture variance from the diagnostic model are consistent with those from the products from which it was derived, although the diagnostic model generally underpredicts soil moisture variance. We use the diagnostic model to quantify the impact of soil moisture, shortwave radiation, and precipitation anomalies on temperature variance in wet and dry regions. Consistent with other studies, we find that fluctuations in soil moisture amplify temperature variance in dry regions through their impact on latent heat flux, whereas in wet regions temperature variability is muted because of high mean evapotranspiration rates afforded by plentiful surface soil moisture. We demonstrate how the diagnostic model can be used to identify sources of temperature variance bias in climate models.

 
more » « less
NSF-PAR ID:
10142398
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Volume:
33
Issue:
9
ISSN:
0894-8755
Page Range / eLocation ID:
p. 3547-3564
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Evaporation plays an extremely important role in determining summertime surface temperature variability over land. Observations show the relationship between evaporation and soil moisture generally conforms to the Budyko “two regime” framework; namely, that evaporation is limited by available soil moisture in dry climates and by radiation in wet climates. This framework has led climate models to different parameterizations of the relationship between evaporation and soil moisture in wet and dry regions. We have developed the Simple Land–Atmosphere Model (SLAM) as a tool for studying land–atmosphere interaction in general, and summertime temperature variability in particular. We use the SLAM to show that a negative feedback between evaporation and surface temperature gives rise to the two apparent evaporation “regimes” and provide analytic solutions for evaporative cooling anomalies that demonstrate the nonlinear impact of soil moisture perturbations. Stemming from the temperature dependence of vapor pressure deficit, the feedback we identify has important implications for how transitions between wet and dry land surfaces may impact temperature variability as the climate warms. We also elucidate the impacts of surface moisture and insolation perturbations on latent and sensible heat fluxes and on surface temperature variability.

     
    more » « less
  2. Abstract

    Human heat stress depends jointly on atmospheric temperature and humidity. Wetter soils reduce temperature but also raise humidity, making the collective impact on heat stress unclear. To better understand these interactions, we use ERA5 to examine the coupling between daily average soil moisture and wet-bulb temperature (Tw) and its seasonal and diurnal cycle at global scale. We identify a global soil moisture–Twcoupling pattern with both widespread negative and positive correlations in contrast to the well-established cooling effect of wet soil on dry-bulb temperature. Regions showing positive correlations closely resemble previously identified land–atmosphere coupling hotspots where soil moisture effectively controls surface energy partition. Soil moisture–Twcoupling varies seasonally closely tied to monsoon development, and the positive coupling is slightly stronger and more widespread during nighttime. Local-scale analysis demonstrates a nonlinear structure of soil moisture–Twcoupling with stronger coupling under relatively dry soils. Hot days with highTwvalues show wetter-than-normal soil, anomalous high latent and low sensible heat flux from a cooler surface, and a shallower boundary layer. This supports the hypothesis that wetter soil increasesTwby concentrating surface moist enthalpy flux within a shallower boundary layer and reducing free-troposphere-air entrainment. We identify areas of particular interest for future studies on the physical mechanisms of soil moisture–heat stress coupling. Our findings suggest that increasing soil moisture might amplify heat stress over large portions of the world including several densely populated areas. These results also raise questions about the effectiveness of evaporative cooling strategies in ameliorating urban heat stress.

    Significance Statement

    The purpose of this study is to provide a global picture of the relationship between soil moisture anomalies and a heat stress metric that includes the joint effects of temperature and humidity. This is important because a better understanding of this relationship will help improve the prediction of extreme heat stress events and inform strategies for ameliorating heat stress. We find a widespread positive correlation between soil moisture and heat stress, in contrast to studies relying on temperature alone. This raises the possibility that, over much of the world, and in the most populous regions, strategies like irrigation or “greening” that can reduce temperature might be ineffective or even harmful in reducing heat stress with humidity incorporated.

     
    more » « less
  3. Abstract The response of zonal-mean precipitation minus evaporation ( P − E ) to global warming is investigated using a moist energy balance model (MEBM) with a simple Hadley cell parameterization. The MEBM accurately emulates zonal-mean P − E change simulated by a suite of global climate models (GCMs) under greenhouse gas forcing. The MEBM also accounts for most of the intermodel differences in GCM P − E change and better emulates GCM P − E change when compared to the “wet-gets-wetter, dry-gets-drier” thermodynamic mechanism. The intermodel spread in P − E change is attributed to intermodel differences in radiative feedbacks, which account for 60%–70% of the intermodel variance, with smaller contributions from radiative forcing and ocean heat uptake. Isolating the intermodel spread of feedbacks to specific regions shows that tropical feedbacks are the primary source of intermodel spread in zonal-mean P − E change. The ability of the MEBM to emulate GCM P − E change is further investigated using idealized feedback patterns. A less negative and narrowly peaked feedback pattern near the equator results in more atmospheric heating, which strengthens the Hadley cell circulation in the deep tropics through an enhanced poleward heat flux. This pattern also increases gross moist stability, which weakens the subtropical Hadley cell circulation. These two processes in unison increase P − E in the deep tropics, decrease P − E in the subtropics, and narrow the intertropical convergence zone. Additionally, a feedback pattern that produces polar-amplified warming partially reduces the poleward moisture flux by weakening the meridional temperature gradient. It is shown that changes to the Hadley cell circulation and the poleward moisture flux are crucial for understanding the pattern of GCM P − E change under warming. Significance Statement Changes to the hydrological cycle over the twenty-first century are predicted to impact ecosystems and socioeconomic activities throughout the world. While it is broadly expected that dry regions will get drier and wet regions will get wetter, the magnitude and spatial structure of these changes remains uncertain. In this study, we use an idealized climate model, which assumes how energy is transported in the atmosphere, to understand the processes setting the pattern of precipitation and evaporation under global warming. We first use the idealized climate model to explain why comprehensive climate models predict different changes to precipitation and evaporation across a range of latitudes. We show this arises primarily from climate feedbacks, which act to amplify or dampen the amount of warming. Ocean heat uptake and radiative forcing play secondary roles but can account for a significant amount of the uncertainty in regions where ocean circulation influences the rate of warming. We further show that uncertainty in tropical feedbacks (mainly from clouds) affects changes to the hydrological cycle across a range of latitudes. We then show how the pattern of climate feedbacks affects how the patterns of precipitation and evaporation respond to climate change through a set of idealized experiments. These results show how the pattern of climate feedbacks impacts tropical hydrological changes by affecting the strength of the Hadley circulation and polar hydrological changes by affecting the transport of moisture to the high latitudes. 
    more » « less
  4. null (Ed.)
    Abstract Skillful subseasonal prediction of extreme heat and precipitation greatly benefits multiple sectors, including water management, public health, and agriculture, in mitigating the impact of extreme events. A statistical model is developed to predict the weekly frequency of extreme warm days and 14-day standardized precipitation index (SPI) during boreal summer in the United States (US). We use a leading principal component of US soil moisture and an index based on the North Pacific sea surface temperature (SST) as predictors. The model outperforms the NCEP’s Climate Forecast System version 2 (CFSv2) at weeks 3-4 in the eastern US. It is found that the North Pacific SST anomalies persist several weeks and are associated with a persistent wave train pattern (WTZ500), which leads to increased occurrences of blocking and extreme temperature over the eastern US. Extreme dry soil moisture conditions persist into week 4 and are associated with an increase in sensible heat flux and decrease in latent heat flux, which may help maintain the overlying anticyclone. The clear sky conditions associated with blocking anticyclones further decrease soil moisture conditions and increase the frequency of extreme warm days. This skillful statistical model has the potential to aid in irrigation scheduling, crop planning, reservoir operation, and provide mitigation of impacts from extreme heat events. 
    more » « less
  5. Abstract

    Earlier studies of land use land cover change (LULCC) normally used only a specified LULCC map with no interannual variations. In this study, using an Atmospheric General Circulation Model (AGCM) coupled with a land surface model, biophysical impacts of LULCC on global and regional climate are investigated by using a LULCC map which covers 63 years from 1948 to 2010 with interannual variation. A methodology has been developed to convert a recently developed LULCC fraction map with 1° × 1° resolution to the AGCM grid points in which only one dominant type is allowed. Comprehensive evaluations are conducted to ensure consistency of the trend of the original LULCC fraction change and the trend of the fraction of grid point changes over different regions. The model was integrated with a potential vegetation map (CTL) and the map with LULCC, in which a set of surface parameters such as leaf area index, albedo and other soil and vegetation parameters were accordingly changed with interannual variation. The results indicate that the interannual LULCC map simulation is able to reproduce better interannual variability of surface temperature and rainfall when compared to the control simulation. LULCC causes negative effect on global precipitation, with the strongest significant signals over degraded regions such as East Asia, West Africa and South America, and some of these changes are consistent with observed regional anomalies for certain time periods. LULCC causes reduction in net radiation and evapotranspiration which leads to changes in monsoon circulation and variation in magnitude and pattern of moisture flux convergence and subsequent reduction in precipitation. Meanwhile, LULCC enhances surface warming during the summer in the LULCC regions due to greatly reduced evapotranspiration. In contradiction to the surface, upper troposphere temperatures are cool because of less latent heat released into the upper troposphere, which leads to weaker circulation in LULCC regions.

     
    more » « less