skip to main content

Title: Duplications in corneous beta protein genes and the evolution of gecko adhesion
Corneous proteins are an important component of the tetrapod integument. Duplication and diversification of keratins and associated proteins are linked with the origin of most novel integumentary structures like mammalian hair, avian feathers, and scutes covering turtle shells. Accordingly, the loss of integumentary structures often coincides with the loss of genes encoding keratin and associated proteins. For example, many hair keratins in dolphins and whales have become pseudogenes. The adhesive setae of geckos and anoles are composed of both intermediate filament keratins (IF-keratins, formerly known as alpha-keratins) and corneous beta-proteins (CBPs, formerly known as beta-keratins) and recent whole genome assemblies of two gecko species and an anole uncovered duplications in seta-specific CBPs in each of these lineages. While anoles evolved adhesive toepads just once, there are two competing hypotheses about the origin(s) of digital adhesion in geckos involving either a single origin or multiple origins. Using data from three published gecko genomes, I examine CBP gene evolution in geckos and find support for a hypothesis where CBP gene duplications are associated with the repeated evolution of digital adhesion. Although these results are preliminary, I discuss how additional gecko genome assemblies, combined with phylogenies of keratin and associated protein genes and more » gene duplication models, can provide rigorous tests of several hypotheses related to gecko CBP evolution. This includes a taxon sampling strategy for sequencing and assembly of gecko genomes that could help resolve competing hypotheses surrounding the origin(s) of digital adhesion. « less
Award ID(s):
Publication Date:
Journal Name:
Integrative and comparative biology
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The remarkable ability of geckos to adhere to a wide-variety of surfaces has served as an inspiration for hundreds of studies spanning the disciplines of biomechanics, functional morphology, ecology, evolution, materials science, chemistry, and physics. The multifunctional properties (e.g., self-cleaning, controlled releasability, reversibility) and adhesive performance of the gekkotan adhesive system have motivated researchers to design and fabricate gecko-inspired synthetic adhesives of various materials and properties. However, many challenges remain in our attempts to replicate the properties and performance of this complex, hierarchical fibrillar adhesive system, stemming from fundamental, but unanswered, questions about how fibrillar adhesion operates. Such questions involve the role of fibril morphology in adhesive performance and how the gekkotan adhesive apparatus is utilized in nature. Similar fibrillar adhesive systems have, however, evolved independently in two other lineages of lizards (anoles and skinks) and potentially provide alternate avenues for addressing these fundamental questions. Anoles are the most promising group because they have been the subject of intensive ecological and evolutionary study for several decades, are highly speciose, and indeed are advocated as squamate model organisms. Surprisingly, however, comparatively little is known about the morphology, performance, and properties of their convergently-evolved adhesive arrays. Although many researchers consider themore »performance of the adhesive system of Anolis lizards to be less accomplished than its gekkotan counterpart, we argue here that Anolis lizards are prime candidates for exploring the fundamentals of fibrillar adhesion. Studying the less complex morphology of the anoline adhesive system has the potential to enhance our understanding of fibril morphology and its relationship to the multifunctional performance of fibrillar adhesive systems. Furthermore, the abundance of existing data on the ecology and evolution of anoles provides an excellent framework for testing hypotheses about the influence of habitat microstructure on the performance, behavior, and evolution of lizards with subdigital adhesive pads.

    « less
  2. Synopsis Recently-developed, molecularly-based phylogenies of geckos have provided the basis for reassessing the number of times adhesive toe-pads have arisen within the Gekkota. At present both a single origin and multiple origin hypotheses prevail, each of which has consequences that relate to explanations about digit form and evolutionary transitions underlying the enormous variation in adhesive toe pad structure among extant, limbed geckos (pygopods lack pertinent features). These competing hypotheses result from mapping the distribution of toe pads onto a phylo- genetic framework employing the simple binary expedient of whether such toe pads are present or absent. It is evident, however, that adhesive toe pads are functional complexes that consist of a suite of integrated structural components that interact to bring about adhesive contact with the substratum and release from it. We evaluated the competing hypotheses about toe pad origins using 34 features associated with digit structure (drawn from the overall form of the digits; the presence and form of adhesive scansors; the proportions and structure of the phalanges; aspects of digital muscular and tendon morphology; presence and form of paraphalangeal elements; and the presence and form of substrate compliance-enhancing structures). We mapped these onto a well-supported phylogeny to reconstruct theirmore »evolution. Nineteen of these characters proved to be informative for all extant, limbed geckos, allowing us to assess which of them exhibit co- occurrence and/or clade-specificity. We found the absence of adhesive toe pads to be the ancestral state for the extant Gekkota as a whole, and our data to be consistent with independent origins of adhesive toe pads in the Diplodactylidae, Sphaerodactylidae, Phyllodactylidae, and Gekkonidae, with a strong likelihood of multiple origins in the latter three families. These findings are consistent with recently-published evidence of the presence of adhesively-competent digits in geckos generally regarded as lacking toe pads. Based upon morphology we identify other taxa at various locations within the gekkotan tree that are promising candidates for the expression of the early phases of adhesively-assisted locomotion. Investigation of functionally transitional forms will be valuable for enhancing our understanding of what is necessary and sufficient for the transition to adhesively-assisted locomotion, and for those whose objectives are to develop simulacra of the gekkotan adhesive system for biotechnological applications.« less
  3. Among the most specialized integumentary outgrowths in amniotes are the adhesive, scale-like scansors and lamellae on the digits of anoles and geckos. Less well-known are adhesive tail pads exhibited by 21 gecko genera. While described over 120 years ago, no studies have quantified their possible adhesive function or described their embryonic development. Here, we characterize adult and embryonic morphology and adhesive performance of crested gecko ( Correlophus ciliatus ) tail pads. Additionally, we use embryonic data to test whether tail pads are serial homologues to toe pads. External morphology and histology of C . ciliatus tail pads are largely similar to tail pads of closely related geckos. Functionally, C . ciliatus tail pads exhibit impressive adhesive ability, hypothetically capable of holding up to five times their own mass. Tail pads develop at approximately the same time during embryogenesis as toe pads. Further, tail pads exhibit similar developmental patterns to toe pads, which are markedly different from non-adhesive gecko toes and tails. Our data provide support for the serial homology of adhesive tail pads with toe pads.
  4. Abstract Background

    Genome size is implicated in the form, function, and ecological success of a species. Two principally different mechanisms are proposed as major drivers of eukaryotic genome evolution and diversity: polyploidy (i.e., whole-genome duplication) or smaller duplication events and bursts in the activity of repetitive elements. Here, we generated de novo genome assemblies of 17 caddisflies covering all major lineages of Trichoptera. Using these and previously sequenced genomes, we use caddisflies as a model for understanding genome size evolution in diverse insect lineages.


    We detect a ∼14-fold variation in genome size across the order Trichoptera. We find strong evidence that repetitive element expansions, particularly those of transposable elements (TEs), are important drivers of large caddisfly genome sizes. Using an innovative method to examine TEs associated with universal single-copy orthologs (i.e., BUSCO genes), we find that TE expansions have a major impact on protein-coding gene regions, with TE-gene associations showing a linear relationship with increasing genome size. Intriguingly, we find that expanded genomes preferentially evolved in caddisfly clades with a higher ecological diversity (i.e., various feeding modes, diversification in variable, less stable environments).


    Our findings provide a platform to test hypotheses about the potential evolutionary roles of TE activity and TE-genemore »associations, particularly in groups with high species, ecological, and functional diversities.

    « less
  5. Abstract The large size and complexity of most fern genomes have hampered efforts to elucidate fundamental aspects of fern biology and land plant evolution through genome-enabled research. Here we present a chromosomal genome assembly and associated methylome, transcriptome and metabolome analyses for the model fern species Ceratopteris richardii . The assembly reveals a history of remarkably dynamic genome evolution including rapid changes in genome content and structure following the most recent whole-genome duplication approximately 60 million years ago. These changes include massive gene loss, rampant tandem duplications and multiple horizontal gene transfers from bacteria, contributing to the diversification of defence-related gene families. The insertion of transposable elements into introns has led to the large size of the Ceratopteris genome and to exceptionally long genes relative to other plants. Gene family analyses indicate that genes directing seed development were co-opted from those controlling the development of fern sporangia, providing insights into seed plant evolution. Our findings and annotated genome assembly extend the utility of Ceratopteris as a model for investigating and teaching plant biology.