skip to main content


Title: Enabling Tailorable Optical Properties and Markedly Enhanced Stability of Perovskite Quantum Dots by Permanently Ligating with Polymer Hairs
Abstract

Instability of perovskite quantum dots (QDs) toward humidity remains one of the major obstacles for their long‐term use in optoelectronic devices. Herein, a general amphiphilic star‐like block copolymer nanoreactor strategy for in situ crafting a set of hairy perovskite QDs with precisely tunable size and exceptionally high water and colloidal stabilities is presented. The selective partition of precursors within the compartment occupied by inner hydrophilic blocks of star‐like diblock copolymers imparts in situ formation of robust hairy perovskite QDs permanently ligated by outer hydrophobic blocks via coprecipitation in nonpolar solvent. These size‐ and composition‐tunable perovskite QDs reveal impressive water and colloidal stabilities as the surface of QDs is intimately and permanently ligated by a layer of outer hydrophobic polymer hairs. More intriguingly, the readily alterable length of outer hydrophobic polymers renders the remarkable control over the stability enhancement of hairy perovskite QDs.

 
more » « less
Award ID(s):
1914713 1727313
NSF-PAR ID:
10460504
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
31
Issue:
32
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The past few years have witnessed rapid advances in the synthesis of high-quality perovskite nanocrystals (PNCs). However, despite the impressive developments, the stability of PNCs remains a substantial challenge. The ability to reliably improve stability of PNCs while retaining their individual nanometer size represents a critical step that underpins future advances in optoelectronic applications. Here, we report an unconventional strategy for crafting dual-shelled PNCs (i.e., polymer-ligated perovskite/SiO 2 core/shell NCs) with exquisite control over dimensions, surface chemistry, and stabilities. In stark contrast to conventional methods, our strategy relies on capitalizing on judiciously designed star-like copolymers as nanoreactors to render the growth of core/shell NCs with controlled yet tunable perovskite core diameter, SiO 2 shell thickness, and surface chemistry. Consequently, the resulting polymer-tethered perovskite/SiO 2 core/shell NCs display concurrently a stellar set of substantially improved stabilities (i.e., colloidal stability, chemical composition stability, photostability, water stability), while having appealing solution processability, which are unattainable by conventional methods. 
    more » « less
  2. Perovskite oxides (ABO3) have been widely recognized as a class of promising noble-metal–free electrocatalysts due to their unique compositional flexibility and structural stability. Surprisingly, investigation into their size-dependent electrocatalytic properties, in particular barium titanate (BaTiO3), has been comparatively few and limited in scope. Herein, we report the scrutiny of size- and dopant-dependent oxygen reduction reaction (ORR) activities of an array of judiciously designed pristine BaTiO3and doped BaTiO3(i.e., La- and Co-doped) nanoparticles (NPs). Specifically, a robust nanoreactor strategy, based on amphiphilic star-like diblock copolymers, is employed to synthesize a set of hydrophobic polymer-ligated uniform BaTiO3NPs of different sizes (≤20 nm) and controlled compositions. Quite intriguingly, the ORR activities are found to progressively decrease with the increasing size of BaTiO3NPs. Notably, La- and Co-doped BaTiO3NPs display markedly improved ORR performance over the pristine counterpart. This can be attributed to the reduced limiting barrier imposed by the formation of -OOH species during ORR due to enhanced adsorption energy of intermediates and the possibly increased conductivity as a result of change in the electronic states as revealed by our density functional theory–based first-principles calculations. Going beyond BaTiO3NPs, a variety of other ABO3NPs with tunable sizes and compositions may be readily accessible by exploiting our amphiphilic star-like diblock copolymer nanoreactor strategy. They could in turn provide a unique platform for both fundamental and practical studies on a suite of physical properties (dielectric, piezoelectric, electrostrictive, catalytic, etc.) contingent upon their dimensions and compositions.

     
    more » « less
  3. Abstract

    Approaches to achieve stable perovskite nanocrystals (PNCs) of interest, in particular those with large structural anisotropy, through protective coating of the inorganic shell at a single‐nanocrystal (NC) level are comparatively few and limited in scope. Reported here is a robust amphiphilic‐diblock‐copolymer‐enabled strategy for crafting highly‐stableanisotropicCsPbBr3nanosheets (NSs) by in situ formation of a uniform inorganic shell (1st shielding) that is intimately ligated with hydrophobic polymers (2nd shielding). The dual‐protected NSs display an array of remarkable stabilities (i.e., thermal, photostability, moisture, polar solvent, aliphatic amine, etc.) and find application in white‐light‐emitting diodes. In principle, by anchoring other multidentate amphiphilic polymer ligands on the surface of PNCs, followed by templated‐growth of shell materials of interest, a rich variety of dual‐shelled, multifunctional PNCs with markedly improved stabilities can be created for use in optics, optoelectronics, and sensory devices.

     
    more » « less
  4. Abstract

    Approaches to achieve stable perovskite nanocrystals (PNCs) of interest, in particular those with large structural anisotropy, through protective coating of the inorganic shell at a single‐nanocrystal (NC) level are comparatively few and limited in scope. Reported here is a robust amphiphilic‐diblock‐copolymer‐enabled strategy for crafting highly‐stableanisotropicCsPbBr3nanosheets (NSs) by in situ formation of a uniform inorganic shell (1st shielding) that is intimately ligated with hydrophobic polymers (2nd shielding). The dual‐protected NSs display an array of remarkable stabilities (i.e., thermal, photostability, moisture, polar solvent, aliphatic amine, etc.) and find application in white‐light‐emitting diodes. In principle, by anchoring other multidentate amphiphilic polymer ligands on the surface of PNCs, followed by templated‐growth of shell materials of interest, a rich variety of dual‐shelled, multifunctional PNCs with markedly improved stabilities can be created for use in optics, optoelectronics, and sensory devices.

     
    more » « less
  5. Lead halide perovskite nanocrystals possess incredible potential as next generation emitters due to their stellar set of optoelectronic properties. Unfortunately, their instability towards many ambient conditions and reliance on batch processing hinder their widespread utilities. Herein, we address both challenges by continuously synthesizing highly stable perovskite nanocrystals via integrating star-like block copolymer nanoreactors into a house-built flow reactor. Perovskite nanocrystals manufactured in this strategy display significantly enhanced colloidal, UV, and thermal stabilities over those synthesized with conventional ligands. Such scaling up of highly stable perovskite nanocrystals represents an important step towards their eventual use in many practical applications in optoelectronic materials and devices. 
    more » « less