skip to main content

Title: Leveling the Field for a Fairer Race between Going and Stopping: Neural Evidence for the Race Model of Motor Inhibition from a New Version of the Stop Signal Task
The stop signal task (SST) is the gold standard experimental model of inhibitory control. However, neither SST condition–contrast (stop vs. go, successful vs. failed stop) purely operationalizes inhibition. Because stop trials include a second, infrequent signal, the stop versus go contrast confounds inhibition with attentional and stimulus processing demands. While this confound is controlled for in the successful versus failed stop contrast, the go process is systematically faster on failed stop trials, contaminating the contrast with a different noninhibitory confound. Here, we present an SST variant to address both confounds and evaluate putative neural indices of inhibition with these influences removed. In our variant, stop signals occurred on every trial, equating the noninhibitory demands of the stop versus go contrast. To entice participants to respond despite the impending stop signals, responses produced before stop signals were rewarded. This also reversed the go process bias that typically affects the successful versus failed stop contrast. We recorded scalp electroencephalography in this new version of the task (as well as a standard version of the SST with infrequent stop signal) and found that, even under these conditions, the properties of the frontocentral stop signal P3 ERP remained consistent with the race model. Specifically, more » in both tasks, the amplitude of the P3 was increased on stop versus go trials. Moreover, the onset of this P3 occurred earlier for successful compared with failed stop trials in both tasks, consistent with the proposal of the race model that an earlier start of the inhibition process will increase stopping success. Therefore, the frontocentral stop signal P3 represents a neural process whose properties are in line with the predictions of the race model of motor inhibition, even when the SST's confounds are controlled. « less
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Journal of Cognitive Neuroscience
Page Range or eLocation-ID:
590 to 602
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Classic work using the stop-signal task has shown that humans can use inhibitory control to cancel already initiated movements. Subsequent work revealed that inhibitory control can be proactively recruited in anticipation of a potential stop-signal, thereby increasing the likelihood of successful movement cancellation. However, the exact neurophysiological effects of proactive inhibitory control on the motor system are still unclear. On the basis of classic views of sensorimotor β-band activity, as well as recent findings demonstrating the burst-like nature of this signal, we recently proposed that proactive inhibitory control is implemented by influencing the rate of sensorimotor β-bursts during movement initiation. Here, we directly tested this hypothesis using scalp EEG recordings of β-band activity in 41 healthy human adults during a bimanual RT task. By comparing motor responses made in two different contexts—during blocks with or without stop-signals—we found that premovement β-burst rates over both contralateral and ipsilateral sensorimotor areas were increased in stop-signal blocks compared to pure-go blocks. Moreover, the degree of this burst rate difference indexed the behavioral implementation of proactive inhibition (i.e., the degree of anticipatory response slowing in the stop-signal blocks). Finally, exploratory analyses showed that these condition differences were explained by a significant increase inmore »β bursting that was already present during baseline period before the movement initiation signal. Together, this suggests that the strategic deployment of proactive inhibitory motor control is implemented by upregulating the tonic inhibition of the motor system, signified by increased sensorimotor β-bursting both before and after signals to initiate a movement.« less
  2. Dominant neuroanatomical models hold that humans regulate their movements via loop-like cortico-subcortical networks, which include the subthalamic nucleus (STN), motor thalamus, and sensorimotor cortex (SMC). Inhibitory commands across these networks are purportedly sent via transient, burst-like signals in the β frequency (15–29 Hz). However, since human depth-recording studies are typically limited to one recording site, direct evidence for this proposition is hitherto lacking. Here, we present simultaneous multi-site recordings from SMC and either STN or motor thalamus in humans performing the stop-signal task. In line with their purported function as inhibitory signals, subcortical β-bursts were increased on successful stop-trials. STN bursts in particular were followed within 50 ms by increased β-bursting over SMC. Moreover, between-site comparisons (including in a patient with simultaneous recordings from SMC, thalamus, and STN) confirmed that β-bursts in STN temporally precede thalamic β-bursts. This highly unique set of recordings provides empirical evidence for the role of β-bursts in conveying inhibitory commands along long-proposed cortico-subcortical networks underlying movement regulation in humans.
  3. Abstract Thus far immunotherapy has had limited impact on ovarian cancer. Vigil (a novel DNA-based multifunctional immune-therapeutic) has shown clinical benefit to prolong relapse-free survival (RFS) and overall survival (OS) in the BRCA wild type and HRP populations. We further analyzed molecular signals related to sensitivity of Vigil treatment. Tissue from patients enrolled in the randomized double-blind trial of Vigil vs. placebo as maintenance in frontline management of advanced resectable ovarian cancer underwent DNA polymorphism analysis. Data was generated from a 981 gene panel to determine the tumor mutation burden and classify variants using Ingenuity Variant Analysis software (Qiagen) or NIH ClinVar. Only variants classified as pathogenic or likely pathogenic were included. STRING application (version 1.5.1) was used to create a protein-protein interaction network. Topological distance and probability of co-mutation were used to calculated the C-score and cumulative C-score (cumC-score). Kaplan–Meier analysis was used to determine the relationship between gene pairs with a high cumC-score and clinical parameters. Improved relapse free survival in Vigil treated patients was found for the TP53 m- BRCA wt-HRP group compared to placebo (21.1 months versus 5.6 months p  = 0.0013). Analysis of tumor mutation burden did not reveal statistical benefit in patients receiving Vigil versusmore »placebo. Results suggest a subset of ovarian cancer patients with enhanced susceptibility to Vigil immunotherapy. The hypothesis-generating data presented invites a validation study of Vigil in target identified populations, and supports clinical consideration of STRING-generated network application to biomarker characterization with other cancer patients targeted with Vigil.« less
  4. Background Inhibitory control, or inhibition, is one of the core executive functions of humans. It contributes to our attention, performance, and physical and mental well-being. Our inhibitory control is modulated by various factors and therefore fluctuates over time. Being able to continuously and unobtrusively assess our inhibitory control and understand the mediating factors may allow us to design intelligent systems that help manage our inhibitory control and ultimately our well-being. Objective The aim of this study is to investigate whether we can assess individuals’ inhibitory control using an unobtrusive and scalable approach to identify digital markers that are predictive of changes in inhibitory control. Methods We developed InhibiSense, an app that passively collects the following information: users’ behaviors based on their phone use and sensor data, the ground truths of their inhibition control measured with stop-signal tasks (SSTs) and ecological momentary assessments (EMAs), and heart rate information transmitted from a wearable heart rate monitor (Polar H10). We conducted a 4-week in-the-wild study, where participants were asked to install InhibiSense on their phone and wear a Polar H10. We used generalized estimating equation (GEE) and gradient boosting tree models fitted with features extracted from participants’ phone use and sensor data tomore »predict their stop-signal reaction time (SSRT), an objective metric used to measure an individual’s inhibitory control, and identify the predictive digital markers. Results A total of 12 participants completed the study, and 2189 EMAs and SST responses were collected. The results from the GEE models suggest that the top digital markers positively associated with an individual’s SSRT include phone use burstiness (P=.005), the mean duration between 2 consecutive phone use sessions (P=.02), the change rate of battery level when the phone was not charged (P=.04), and the frequency of incoming calls (P=.03). The top digital markers negatively associated with SSRT include the standard deviation of acceleration (P<.001), the frequency of short phone use sessions (P<.001), the mean duration of incoming calls (P<.001), the mean decibel level of ambient noise (P=.007), and the percentage of time in which the phone was connected to the internet through a mobile network (P=.001). No significant correlation between the participants’ objective and subjective measurement of inhibitory control was found. Conclusions We identified phone-based digital markers that were predictive of changes in inhibitory control and how they were positively or negatively associated with a person’s inhibitory control. The results of this study corroborate the findings of previous studies, which suggest that inhibitory control can be assessed continuously and unobtrusively in the wild. We discussed some potential applications of the system and how technological interventions can be designed to help manage inhibitory control.« less
  5. Candolin, Ulrika (Ed.)
    Abstract Females of many species choose mates using multiple sensory modalities. Multimodal noise may arise, however, in dense aggregations of animals communicating via multiple sensory modalities. Some evidence suggests multimodal signals may not always improve receiver decision-making performance. When sensory systems process input from multimodal signal sources, multimodal noise may arise and potentially complicate decision-making due to the demands on cognitive integration tasks. We tested female túngara frog, Physalaemus (=Engystomops) pustulosus, responses to male mating signals in noise from multiple sensory modalities (acoustic and visual). Noise treatments were partitioned into three categories: acoustic, visual, and multimodal. We used natural calls from conspecifics and heterospecifics for acoustic noise. Robotic frogs were employed as either visual signal components (synchronous vocal sac inflation with call) or visual noise (asynchronous vocal sac inflation with call). Females expressed a preference for the typically more attractive call in the presence of unimodal noise. However, during multimodal signal and noise treatments (robofrogs employed with background noise), females failed to express a preference for the typically attractive call in the presence of conspecific chorus noise. We found that social context and temporal synchrony of multimodal signaling components are important for multimodal communication. Our results demonstrate that multimodal signalsmore »have the potential to increase the complexity of the sensory scene and reduce the efficacy of female decision making.« less