skip to main content

Title: Evolutionary Physiology and Genomics in the Highly Adaptable Killifish (Fundulus heteroc
By investigating evolutionary adaptations that change physiological functions, we can enhance our understanding of how organisms work, the importance of physiological traits, and the genes that influence these traits. This approach of investigating the evolution of physiological adaptation has been used with the teleost fish Fundulus heteroclitus and has produced insights into (i) how protein polymorphisms enhance swimming and development; (ii) the role of equilibrium enzymes in modulating metabolic flux; (iii) how variation in DNA sequences and mRNA expression patterns mitigate changes in temperature, pollution, and salinity; and (iv) the importance of nuclear-mitochondrial genome interactions for energy metabolism. Fundulus heteroclitus provides so many examples of adaptive evolution because their local population sizes are large, they have significant standing genetic variation, and they experience large ranges of environmental conditions that enhance the likelihood that adaptive evolution will occur. Thus, F. heteroclitus research takes advantage of evolutionary changes associated with exposure to diverse environments, both across the North American Atlantic coast and within local habitats, to contrast neutral versus adaptive divergence. Based on evolutionary analyses contrasting neutral and adaptive evolution in F. heteroclitus populations, we conclude that adaptive evolution can occur readily and rapidly, at least in part because it depends on more » large amounts of standing genetic variation among many genes that can alter physiological traits. These observations of polygenic adaptation enhance our understanding of how evolution and physiological adaptation progresses, thus informing both biological and medical scientists about genotype-phenotype relationships « less
Award ID(s):
1754437 1556396
Publication Date:
Journal Name:
Comprehensive physiology
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Evolution by natural selection may be effective enough to allow for recurrent, rapid adaptation to distinct niche environments within a well-mixed population. For this to occur, selection must act on standing genetic variation such that mortality i.e. genetic load, is minimized while polymorphism is maintained. Selection on multiple, redundant loci of small effect provides a potentially inexpensive solution. Yet, demonstrating adaptation via redundant, polygenic selection in the wild remains extremely challenging because low per-locus effect sizes and high genetic redundancy severely reduce statistical power. One approach to facilitate identification of loci underlying polygenic selection is to harness natural replicate populations experiencing similar selection pressures that harbor high within-, yet negligible among-population genetic variation. Such populations can be found among the teleost Fundulus heteroclitus. F. heteroclitus inhabits salt marsh estuaries that are characterized by high environmental heterogeneity e.g. tidal ponds, creeks, coastal basins. Here, we sample four of these heterogeneous niches (one coastal basin and three replicate tidal ponds) at two time points from among a single, panmictic F. heteroclitus population. We identify 10,861 single nucleotide polymorphisms using a genotyping-by-sequencing approach and quantify temporal allele frequency change within, as well as spatial divergence among subpopulations residing in these niches. We findmore »a significantly elevated number of concordant allele frequency changes among all subpopulations, suggesting ecosystem-wide adaptation to a common selection pressure. Remarkably, we also find an unexpected number of temporal allele frequency changes that generate fine-scale divergence among subpopulations, suggestive of local adaptation to distinct niche environments. Both patterns are characterized by a lack of large-effect loci yet an elevated total number of significant loci. Adaptation via redundant, polygenic selection offers a likely explanation for these patterns as well as a potential mechanism for polymorphism maintenance in the F. heteroclitus system.« less
  2. Fraser, Bonnie (Ed.)
    Abstract Selection on standing genetic variation may be effective enough to allow for adaptation to distinct niche environments within a single generation. Minor allele frequency changes at multiple, redundant loci of small effect can produce remarkable phenotypic shifts. Yet, demonstrating rapid adaptation via polygenic selection in the wild remains challenging. Here we harness natural replicate populations that experience similar selection pressures and harbor high within-, yet negligible among-population genetic variation. Such populations can be found among the teleost Fundulus heteroclitus that inhabits marine estuaries characterized by high environmental heterogeneity. We identify 10,861 single nucleotide polymorphisms in F. heteroclitus that belong to a single, panmictic population yet reside in environmentally distinct niches (one coastal basin and three replicate tidal ponds). By sampling at two time points within a single generation, we quantify both allele frequency change within as well as spatial divergence among niche subpopulations. We observe few individually significant allele frequency changes yet find that the “number” of moderate changes exceeds the neutral expectation by 10–100%. We find allele frequency changes to be significantly concordant in both direction and magnitude among all niche subpopulations, suggestive of parallel selection. In addition, within-generation allele frequency changes generate subtle but significant divergence among niches,more »indicative of local adaptation. Although we cannot distinguish between selection and genotype-dependent migration as drivers of within-generation allele frequency changes, the trait/s determining fitness and/or migration likelihood appear to be polygenic. In heterogeneous environments, polygenic selection and polygenic, genotype-dependent migration offer conceivable mechanisms for within-generation, local adaptation to distinct niches.« less
  3. To better understand temperature's role in the interaction between local evolutionary adaptation and physiological plasticity, we investigated acclimation effects on metabolic performance and thermal tolerance among natural Fundulus heteroclitus (small estuarine fish) populations from different thermal environments. Fundulus heteroclitus populations experience large daily and seasonal temperature variations, as well as local mean temperature differences across their large geographical cline. In this study, we use three populations: one locally heated (32°C) by thermal effluence (TE) from the Oyster Creek Nuclear Generating Station, NJ, and two nearby reference populations that do not experience local heating (28°C). After acclimation to 12 or 28°C, we quantified whole-animal metabolic (WAM) rate, critical thermal maximum (CT max ) and substrate-specific cardiac metabolic rate (CaM, substrates: glucose, fatty acids, lactate plus ketones plus ethanol, and endogenous (i.e. no added substrates)) in approximately 160 individuals from these three populations. Populations showed few significant differences due to large interindividual variation within populations. In general, for WAM and CT max , the interindividual variation in acclimation response (log 2 ratio 28/12°C) was a function of performance at 12°C and order of acclimation (12–28°C versus 28–12°C). CT max and WAM were greater at 28°C than 12°C, although WAM had a smallmore »change (2.32-fold) compared with the expectation for a 16°C increase in temperature (expect 3- to 4.4-fold). By contrast, for CaM, the rates when acclimatized and assayed at 12 or 28°C were nearly identical. The small differences in CaM between 12 and 28°C temperature were partially explained by cardiac remodeling where individuals acclimatized to 12°C had larger hearts than individuals acclimatized to 28°C. Correlation among physiological traits was dependent on acclimation temperature. For example, WAM was negatively correlated with CT max at 12°C but positively correlated at 28°C. Additionally, glucose substrate supported higher CaM than fatty acid, and fatty acid supported higher CaM than lactate, ketones and alcohol (LKA) or endogenous. However, these responses were highly variable with some individuals using much more FA than glucose. These findings suggest interindividual variation in physiological responses to temperature acclimation and indicate that additional research investigating interindividual may be relevant for global climate change responses in many species.« less
  4. BACKGROUND Charles Darwin’s  Descent of Man, and Selection in Relation to Sex  tackled the two main controversies arising from the Origin of Species:  the evolution of humans from animal ancestors and the evolution of sexual ornaments. Most of the book focuses on the latter, Darwin’s theory of sexual selection. Research since supports his conjecture that songs, perfumes, and intricate dances evolve because they help secure mating partners. Evidence is overwhelming for a primary role of both male and female mate choice in sexual selection—not only through premating courtship but also through intimate interactions during and long after mating. But what makes one prospective mate more enticing than another? Darwin, shaped by misogyny and sexual prudery, invoked a “taste for the beautiful” without speculating on the origin of the “taste.” How to explain when the “final marriage ceremony” is between two rams? What of oral sex in bats, cloacal rubbing in bonobos, or the sexual spectrum in humans, all observable in Darwin’s time? By explaining desire through the lens of those male traits that caught his eyes and those of his gender and culture, Darwin elided these data in his theory of sexual evolution. Work since Darwin has focused on howmore »traits and preferences coevolve. Preferences can evolve even if attractive signals only predict offspring attractiveness, but most attention has gone to the intuitive but tenuous premise that mating with gorgeous partners yields vigorous offspring. By focusing on those aspects of mating preferences that coevolve with male traits, many of Darwin’s influential followers have followed the same narrow path. The sexual selection debate in the 1980s was framed as “good genes versus runaway”: Do preferences coevolve with traits because traits predict genetic benefits, or simply because they are beautiful? To the broader world this is still the conversation. ADVANCES Even as they evolve toward ever-more-beautiful signals and healthier offspring, mate-choice mechanisms and courter traits are locked in an arms race of coercion and resistance, persuasion and skepticism. Traits favored by sexual selection often do so at the expense of chooser fitness, creating sexual conflict. Choosers then evolve preferences in response to the costs imposed by courters. Often, though, the current traits of courters tell us little about how preferences arise. Sensory systems are often tuned to nonsexual cues like food, favoring mating signals resembling those cues. And preferences can emerge simply from selection on choosing conspecifics. Sexual selection can therefore arise from chooser biases that have nothing to do with ornaments. Choice may occur before mating, as Darwin emphasized, but individuals mate multiple times and bias fertilization and offspring care toward favored partners. Mate choice can thus occur in myriad ways after mating, through behavioral, morphological, and physiological mechanisms. Like other biological traits, mating preferences vary among individuals and species along multiple dimensions. Some of this is likely adaptive, as different individuals will have different optimal mates. Indeed, mate choice may be more about choosing compatible partners than picking the “best” mate in the absolute sense. Compatibility-based choice can drive or reinforce genetic divergence and lead to speciation. The mechanisms underlying the “taste for the beautiful” determine whether mate choice accelerates or inhibits reproductive isolation. If preferences are learned from parents, or covary with ecological differences like the sensory environment, then choice can promote genetic divergence. If everyone shares preferences for attractive ornaments, then choice promotes gene flow between lineages. OUTLOOK Two major trends continue to shift the emphasis away from male “beauty” and toward how and why individuals make sexual choices. The first integrates neuroscience, genomics, and physiology. We need not limit ourselves to the feathers and dances that dazzled Darwin, which gives us a vastly richer picture of mate choice. The second is that despite persistent structural inequities in academia, a broader range of people study a broader range of questions. This new focus confirms Darwin’s insight that mate choice makes a primary contribution to sexual selection, but suggests that sexual selection is often tangential to mate choice. This conclusion challenges a persistent belief with sinister roots, whereby mate choice is all about male ornaments. Under this view, females evolve to prefer handsome males who provide healthy offspring, or alternatively, to express flighty whims for arbitrary traits. But mate-choice mechanisms also evolve for a host of other reasons Understanding mate choice mechanisms is key to understanding how sexual decisions underlie speciation and adaptation to environmental change. New theory and technology allow us to explicitly connect decision-making mechanisms with their evolutionary consequences. A century and a half after Darwin, we can shift our focus to females and males as choosers, rather than the gaudy by-products of mate choice. Mate choice mechanisms across domains of life. Sensory periphery for stimulus detection (yellow), brain for perceptual integration and evaluation (orange), and reproductive structures for postmating choice among pollen or sperm (teal). ILLUSTRATION: KELLIE HOLOSKI/ SCIENCE« less
  5. Variation in tissue-specific metabolism between species and among individuals is thought to be adaptively important; however, understanding this evolutionary relationship requires reliably measuring this trait in many individuals. In most higher organisms, tissue specificity is important because different organs (heart, brain, liver, muscle) have unique ecologically adaptive roles. Current technology and methodology for measuring tissue-specific metabolism is costly and limited by throughput capacity and efficiency. Presented here is the design for a flexible and cost-effective high-throughput micro-respirometer (HTMR) optimized to measure small biological samples. To verify precision and accuracy, substrate specific metabolism was measured in heart ventricles isolated from a small teleost, Fundulus heteroclitus, and in yeast (Saccharomyces cerevisiae). Within the system, results were reproducible between chambers and over time with both teleost hearts and yeast. Additionally, metabolic rates and allometric scaling relationships in Fundulus agree with previously published data measured with lower-throughput equipment. This design reduces cost, but still provides an accurate measure of metabolism in small biological samples. This will allow for high-throughput measurement of tissue metabolism that can enhance understanding of the adaptive importance of complex metabolic traits.