skip to main content


Title: Modeling nonisothermal crystallization in a BaO∙2SiO 2 glass
Abstract

The accuracy of a differential thermal analysis (DTA) technique for predicting the temperature range of significant nucleation is examined in a BaO∙2SiO2glass by iterative numerical calculations. The numerical model takes account of time‐dependent nucleation, finite particle size, size‐dependent crystal growth rates, and surface crystallization. The calculations were made using the classical and, for the first time, the diffuse interface theories of nucleation. The results of the calculations are in agreement with experimental measurements, demonstrating the validity of the DTA technique. They show that this is independent of the DTA scan rate used and that surface crystallization has a negligible effect for the glass particle sizes studied. A breakdown of the Stokes‐Einstein relation between viscosity and the diffusion coefficient is demonstrated for low temperatures, near the maximum nucleation rate. However, it is shown that accurate values for the diffusion coefficient can be obtained from the induction time for nucleation and the growth velocity in this temperature range.

 
more » « less
Award ID(s):
1720296
NSF-PAR ID:
10458302
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of the American Ceramic Society
Volume:
103
Issue:
4
ISSN:
0002-7820
Page Range / eLocation ID:
p. 2471-2482
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Bubble nucleation is the critical first step during magma degassing. The resultant number density of bubbles provides a record of nucleation kinetics and underlying eruptive conditions. The rate of bubble nucleation is strongly dependent on the surface free energy associated with nucleus formation, making the use of bubble number density for the interpretation of eruptive conditions contingent upon a sound understanding of surface tension. Based on a suite of nucleation experiments with up to >1016bubbles per unit volume of melt, and using numerical simulations of bubble nucleation and growth during each experiment, we provide a new formulation for surface tension during homogeneous nucleation of H2O bubbles in rhyolitic melt. It is based on the Tolman correction with a Tolman length ofδ = 0.32 nm, which implies an increase in surface tension of bubbles with decreasing nucleus size. Our model results indicate that experiments encompass two distinct nucleation regimes, distinguishable by the ratio of the characteristic diffusion time of water,τdiff, to the decompression time,td. Experiments with >1013 m−3bubbles are characterized byτdiff/td≪ 1, wherein the nucleation rate predominantly depends on the interplay between decompression and diffusion rates. Nucleation occurs over a short time interval with nucleation rate peaks at high values. For experiments with comparatively low bubble number density the average distance between adjacent bubbles and the diffusion timescale is large. Consequently,τdiff/td≫ 1 and nucleation is nearly unaffected by diffusion and independent of decompression rate, with bubbles nucleating at an approximately constant rate until the sample is quenched.

     
    more » « less
  2. null (Ed.)
    Abstract Numerical cloud models require estimates of the vapor growth rate for ice crystals. Current bulk and bin microphysical parameterizations generally assume that vapor growth is diffusion limited, though some parameterizations include the influence of surface attachment kinetics through a constant deposition coefficient. A parameterization for variable deposition coefficients is provided herein. The parameterization is an explicit function of the ambient ice supersaturation and temperature, and an implicit function of crystal dimensions and pressure. The parameterization is valid for variable surface types including growth by dislocations and growth by step nucleation. Deposition coefficients are predicted for the two primary growth directions of crystals, allowing for the evolution of the primary habits. Comparisons with benchmark calculations of instantaneous mass growth indicate that the parameterization is accurate to within a relative error of 1%. Parcel model simulations using Lagrangian microphysics as a benchmark indicate that the bulk parameterization captures the evolution of mass mixing ratio and fall speed with typical relative errors of less than 10%, whereas the average axis lengths can have errors of up to 20%. The bin model produces greater accuracy with relative errors often less that 10%. The deposition coefficient parameterization can be used in any bulk and bin scheme, with low error, if an equivalent volume spherical radius is provided. 
    more » « less
  3. Abstract

    Resorbable glasses with nominal molar compositions of 20Na2O·30[(1−x)CaO·xSrO]∙50P2O5, wherex = 0, 0.25, 0.50, 0.75, and 1, were prepared and characterized. With the replacement of CaO by SrO, the molar volume, refractive index, and coefficient of thermal expansion increased, and the glass transition temperature, crystallization temperature, and viscosity decreased. The replacement of CaO by SrO decreased the dissolution rate in 37°C water by nearly an order of magnitude. Resorbable glass fibers drawn from melts of the 20Na2O·30CaO·50P2O5glass exhibited decreasing transmission of laser light (632 nm) in a predictable way as the fiber dissolved in a phosphate buffer solution. This demonstrated that these glasses could be used to produce resorbable fibers for temporary biosensing or therapeutic applications.

     
    more » « less
  4. Two-dimensional (2D) substrates decorated with metal nanoparticles offer new opportunities to achieve high-performance catalytic behavior. However, little is known on how the substrates control the nucleation and growth processes of the nanoparticles. This paper presents the visualization of dynamic nucleation and growth processes of gold nanoparticles on ultrathin MoS 2 nanoflakes by in situ liquid-cell transmission electron microscopy (TEM). The galvanic displacement resulting in Au nuclei formation on MoS 2 was observed in real time inside the liquid cell. We found that the growth mechanism of Au particles on pristine MoS 2 is in between diffusion-limited and reaction-limited, possibly due to the presence of electrochemical Ostwald ripening. A larger size distribution and more orientation variation is observed for the Au particles along the MoS 2 edge than on the interior. Differing from pristine MoS 2 , sulfur vacancies on MoS 2 induce Au particle diffusion and coalescence during the growth process. Density functional theory (DFT) calculations show that the size difference is because the exposed molybdenum atoms at the edge with dangling bonds can strongly interact with Au atoms, whereas sulfur atoms on the MoS 2 interior have no dangling bonds and weakly interact with gold atoms. In addition, S vacancies on MoS 2 generate strong nucleation centers that can promote diffusion and coalescence of Au nanoparticles. The present work provides key insights into the role of 2D materials in controlling the size and orientation of noble metal nanoparticles vital to the design of next generation catalysts. 
    more » « less
  5. Abstract

    A multistep deposition technique is developed to produce highly oriented diamond films by hot filament chemical vapor deposition (HFCVD) on Si (111) substrates. The orientation is produced by use of a thin, 5–20 nm, Ni interlayer. Annealing studies demonstrate diffusion of Ni into Si to form nickel silicides with crystal structure depending on temperature. The HFCVD diamond film with Ni interlayer results in reduced non-diamond carbon, low surface roughness, high diamond crystal quality, and increased texturing relative to growth on bare silicon wafers. X-ray diffraction results show that the diamond film grown with 10 nm Ni interlayer yielded 92.5% of the diamond grains oriented along the (110) crystal planes with ~ 2.5 µm thickness and large average grain size ~ 1.45 µm based on scanning electron microscopy. Texture is also observed to develop for ~ 300 nm thick diamond films with ~ 89.0% of the grains oriented along the (110) crystal plane direction. These results are significantly better than diamond grown on Si (111) without Ni layer with the same HFCVD conditions. The oriented growth of diamond film on Ni interlayers is explained by a proposed model wherein the nano-diamond seeds becoming oriented relative to the β1-Ni3Si that forms during the diamond nucleation period. The model also explains the silicidation and diamond growth processes.

    Article Highlights

    High quality diamond film with minimum surface roughness and ~93% oriented grains along (110) crystallographic direction is grown on Si substrate using a thin 5 to 20 nm nickel layer.

    A detailed report on the formation of different phases of nickel silicide, its stability with different temperature, and its role for diamond film texturing at HFCVD growth condition is presented.

    A diamond growth model on Si substrate with Ni interlayer to grow high quality-oriented diamond film is established.

     
    more » « less