In Part 2 of our guide to collisionless fluid models, we concentrate on Landau fluid closures. These closures were pioneered by Hammett and Perkins and allow for the rigorous incorporation of collisionless Landau damping into a fluid framework. It is Landau damping that sharply separates traditional fluid models and collisionless kinetic theory, and is the main reason why the usual fluid models do not converge to the kinetic description, even in the long-wavelength low-frequency limit. We start with a brief introduction to kinetic theory, where we discuss in detail the plasma dispersion function $$Z(\unicode[STIX]{x1D701})$$ , and the associated plasma response function $$R(\unicode[STIX]{x1D701})=1+\unicode[STIX]{x1D701}Z(\unicode[STIX]{x1D701})=-Z^{\prime }(\unicode[STIX]{x1D701})/2$$ . We then consider a one-dimensional (1-D) (electrostatic) geometry and make a significant effort to map all possible Landau fluid closures that can be constructed at the fourth-order moment level. These closures for parallel moments have general validity from the largest astrophysical scales down to the Debye length, and we verify their validity by considering examples of the (proton and electron) Landau damping of the ion-acoustic mode, and the electron Landau damping of the Langmuir mode. We proceed by considering 1-D closures at higher-order moments than the fourth order, and as was concluded in Part 1, this is not possible without Landau fluid closures. We show that it is possible to reproduce linear Landau damping in the fluid framework to any desired precision, thus showing the convergence of the fluid and collisionless kinetic descriptions. We then consider a 3-D (electromagnetic) geometry in the gyrotropic (long-wavelength low-frequency) limit and map all closures that are available at the fourth-order moment level. In appendix A, we provide comprehensive tables with Padé approximants of $$R(\unicode[STIX]{x1D701})$$ up to the eighth-pole order, with many given in an analytic form.
more »
« less
An introductory guide to fluid models with anisotropic temperatures. Part 1. CGL description and collisionless fluid hierarchy
We present a detailed guide to advanced collisionless fluid models that incorporate kinetic effects into the fluid framework, and that are much closer to the collisionless kinetic description than traditional magnetohydrodynamics. Such fluid models are directly applicable to modelling the turbulent evolution of a vast array of astrophysical plasmas, such as the solar corona and the solar wind, the interstellar medium, as well as accretion disks and galaxy clusters. The text can be viewed as a detailed guide to Landau fluid models and it is divided into two parts. Part 1 is dedicated to fluid models that are obtained by closing the fluid hierarchy with simple (non-Landau fluid) closures. Part 2 is dedicated to Landau fluid closures. Here in Part 1, we discuss the fluid model of Chew–Goldberger–Low (CGL) in great detail, together with fluid models that contain dispersive effects introduced by the Hall term and by the finite Larmor radius corrections to the pressure tensor. We consider dispersive effects introduced by the non-gyrotropic heat flux vectors. We investigate the parallel and oblique firehose instability, and show that the non-gyrotropic heat flux strongly influences the maximum growth rate of these instabilities. Furthermore, we discuss fluid models that contain evolution equations for the gyrotropic heat flux fluctuations and that are closed at the fourth-moment level by prescribing a specific form for the distribution function. For the bi-Maxwellian distribution, such a closure is known as the ‘normal’ closure. We also discuss a fluid closure for the bi-kappa distribution. Finally, by considering one-dimensional Maxwellian fluid closures at higher-order moments, we show that such fluid models are always unstable. The last possible non Landau fluid closure is therefore the ‘normal’ closure, and beyond the fourth-order moment, Landau fluid closures are required.
more »
« less
- PAR ID:
- 10143311
- Date Published:
- Journal Name:
- Journal of Plasma Physics
- Volume:
- 85
- Issue:
- 6
- ISSN:
- 0022-3778
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Several generalizations of the well-known fluid model of Braginskii (1965) are considered. We use the Landau collisional operator and the moment method of Grad. We focus on the 21-moment model that is analogous to the Braginskii model, and we also consider a 22-moment model. Both models are formulated for general multispecies plasmas with arbitrary masses and temperatures, where all of the fluid moments are described by their evolution equations. The 21-moment model contains two “heat flux vectors” (third- and fifth-order moments) and two “viscosity tensors” (second- and fourth-order moments). The Braginskii model is then obtained as a particular case of a one ion–electron plasma with similar temperatures, with decoupled heat fluxes and viscosity tensors expressed in a quasistatic approximation. We provide all of the numerical values of the Braginskii model in a fully analytic form (together with the fourth- and fifth-order moments). For multispecies plasmas, the model makes the calculation of the transport coefficients straightforward. Formulation in fluid moments (instead of Hermite moments) is also suitable for implementation into existing numerical codes. It is emphasized that it is the quasistatic approximation that makes some Braginskii coefficients divergent in a weakly collisional regime. Importantly, we show that the heat fluxes and viscosity tensors are coupled even in the linear approximation, and that the fully contracted (scalar) perturbations of the fourth-order moment, which are accounted for in the 22-moment model, modify the energy exchange rates. We also provide several appendices, which can be useful as a guide for deriving the Braginskii model with the moment method of Grad.more » « less
-
We consider a reduced dynamics for the first four fluid moments of the one-dimensional Vlasov–Poisson equation, namely, fluid density, fluid velocity, pressure, and heat flux. This dynamics depends on an equation of state to close the system. This equation of state (closure) connects the fifth-order moment—related to the kurtosis in velocity of the Vlasov distribution—with the first four moments. By solving the Jacobi identity, we derive an equation of state, which ensures that the resulting reduced fluid model is Hamiltonian. We show that this Hamiltonian closure allows symmetric homogeneous equilibria of the reduced fluid model to be stable.more » « less
-
Abstract We consider the spectrum of eigenmodes in a stellar system dominated by gravitational forces in the limit of zero collisions. We show analytically and numerically using the Lenard–Bernstein collision operator that the Landau modes, which are not true eigenmodes in a strictly collisionless system (except for the Jeans unstable mode), become part of the true eigenmode spectrum in the limit of zero collisions. Under these conditions, the continuous spectrum of true eigenmodes in a collisionless system, also known as the Case–van Kampen modes, is eliminated. Furthermore, because the background distribution function in a weakly collisional system can exhibit significant deviations from a Maxwellian distribution function over long times, we show that the spectrum of Landau modes can change drastically even in the presence of slight deviations from a Maxwellian, primarily through the appearance of weakly damped modes that may be otherwise heavily damped for a Maxwellian distribution. Our results provide important insights for developing statistical theories to describe thermal fluctuations in a stellar system, which are currently a subject of great interest forN-body simulations as well as observations of gravitational systems.more » « less
-
ABSTRACT We derive a consistent set of moment equations for cosmic ray (CR)-magnetohydrodynamics, assuming a gyrotropic distribution function (DF). Unlike previous efforts, we derive a closure, akin to the M1 closure in radiation hydrodynamics (RHD), that is valid in both the nearly isotropic DF and/or strong-scattering regimes, and the arbitrarily anisotropic DF or free-streaming regimes, as well as allowing for anisotropic scattering and transport/magnetic field structure. We present the appropriate two-moment closure and equations for various choices of evolved variables, including the CR phase space DF f, number density n, total energy e, kinetic energy ϵ, and their fluxes or higher moments, and the appropriate coupling terms to the gas. We show that this naturally includes and generalizes a variety of terms including convection/fluid motion, anisotropic CR pressure, streaming, diffusion, gyro-resonant/streaming losses, and re-acceleration. We discuss how this extends previous treatments of CR transport including diffusion and moment methods and popular forms of the Fokker–Planck equation, as well as how this differs from the analogous M1-RHD equations. We also present two different methods for incorporating a reduced speed of light (RSOL) to reduce time-step limitations: In both, we carefully address where the RSOL (versus true c) must appear for the correct behaviour to be recovered in all interesting limits, and show how current implementations of CRs with an RSOL neglect some additional terms.more » « less
An official website of the United States government

