skip to main content


Title: Ecogeographical rules and the macroecology of food webs
Abstract Aim

How do factors such as space, time, climate and other ecological drivers influence food web structure and dynamics? Collections of well‐studied food webs and replicate food webs from the same system that span biogeographical and ecological gradients now enable detailed, quantitative investigation of such questions and help integrate food web ecology and macroecology. Here, we integrate macroecology and food web ecology by focusing on how ecogeographical rules [the latitudinal diversity gradient (LDG), Bergmann's rule, the island rule and Rapoport's rule] are associated with the architecture of food webs.

Location

Global.

Time period

Current.

Major taxa studied

All taxa.

Methods

We discuss the implications of each ecogeographical rule for food webs, present predictions for how food web structure will vary with each rule, assess empirical support where available, and discuss how food webs may influence ecogeographical rules. Finally, we recommend systems and approaches for further advancing this research agenda.

Results

We derived testable predictions for some ecogeographical rules (e.g. LDG, Rapoport's rule), while for others (e.g., Bergmann's and island rules) it is less clear how we would expect food webs to change over macroecological scales. Based on the LDG, we found weak support for both positive and negative relationships between food chain length and latitude and for increased generality and linkage density at higher latitudes. Based on Rapoport's rule, we found support for the prediction that species turnover in food webs is inversely related to latitude.

Main conclusions

The macroecology of food webs goes beyond traditional approaches to biodiversity at macroecological scales by focusing on trophic interactions among species. The collection of food web data for different types of ecosystems across biogeographical gradients is key to advance this research agenda. Further, considering food web interactions as a selection pressure that drives or disrupts ecogeographical rules has the potential to address both mechanisms of and deviations from these macroecological relationships. For these reasons, further integration of macroecology and food webs will help ecologists better understand the assembly, maintenance and change of ecosystems across space and time.

 
more » « less
Award ID(s):
1934817 1754207
NSF-PAR ID:
10460057
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Ecology and Biogeography
Volume:
28
Issue:
9
ISSN:
1466-822X
Page Range / eLocation ID:
p. 1204-1218
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The equilibrium theory of island biogeography and its quantitative consideration of origination and extinction dynamics as they relate to island area and distance from source populations have evolved over time and enriched theory related to many disciplines in spatial ecology. Indeed, the island focus was catalytic to the emergence of landscape ecology and macroecology in the late 20th century. We integrate concepts and perspectives of island biogeography, landscape ecology, macroecology, and metacommunity ecology, and show how these disciplines have advanced the understanding of variation in abundance, biodiversity, and composition of bat communities. We leverage the well‐studied bat fauna of the islands in the Caribbean to illustrate the complex interplay of ecological, biogeographical, and evolutionary processes in molding local biodiversity and system‐wide structure. Thereafter, we highlight the role of habitat loss and fragmentation, which is increasing at an accelerating rate during the Anthropocene, on the structure of local bat communities and regional metacommunities across landscapes. Bat species richness increases with the amount of available habitat, often forming nested subsets along gradients of patch or island area. Similarly, the distance to and identity of sources of colonization influence the richness, composition, and metacommunity structure of islands and landscape networks.

     
    more » « less
  2. Abstract Aim

    We examined body size scaling relationships for two developmental life stages of parasitic helminths (egg and adult) separately in relationship to latitude (i.e. Bergmann's rule), temperature and temperature seasonality. Given that helminth eggs experience environmental conditions more directly, whereas adults live inside infected host individuals, we predict stronger environmentally driven gradients of body size for eggs than for adults.

    Location

    Global.

    Time period

    Present day.

    Major taxa studied

    Parasitic helminths.

    Methods

    We compiled egg size and adult body size data (both minimum and maximum) for 265 parasitic helminth species from the literature, along with species latitudinal distribution information using an extensive global helminth occurrence database. We then examined how the average helminth egg and adult body size of all helminth species present (minimum and maximum separately) scaled with latitude, temperature and temperature variability, using generalized linear models.

    Results

    Both the egg size and the adult body size of helminths tended to decrease towards higher latitudes, although we found the opposite body size scaling pattern for their host species. Helminth sizes were also positively correlated with temperature and negatively, but more weakly, with temperature seasonality.

    Main conclusions

    Instead of following the body size patterns of their hosts, helminth parasites are more similar to other ectotherms in that they follow the converse Bergmann's rule. This pattern did not differ between helminth developmental stages, suggesting that mean annual temperature and seasonality are unlikely to be related mechanistically to body size variation in this case.

     
    more » « less
  3. Abstract Aim

    Global interspecific body size distributions have been suggested to be shaped by selection pressures arising from biotic and abiotic factors such as temperature, predation and parasitism. Here, we investigated the ecological and evolutionary drivers of global latitudinal size gradients in an old insect order.

    Location

    Global.

    Taxon

    Odonata (dragonflies and damselflies).

    Methods

    We compiled data on interspecific variation in extant and extinct body sizes of Odonata, using an already existing database (The Odonate Phenotypic Database) and fossil data (The Paleobiology Database). We combined such body size data with latitudinal information and data on biotic and abiotic environmental variables across the globe to investigate and quantify interspecific latitudinal size‐gradients (“Bergmann's Rule”) and their environmental determinants. We used phylogenetic comparative methods and a global published phylogeny of Odonata to address these questions.

    Results

    Phylogenetic comparative analyses revealed that global size variation of extant Odonata taxa is negatively influenced by both regional avian diversity and temperature, with larger‐bodied species in the suborder Anisoptera (dragonflies) showing a steeper size‐latitude relationship than smaller‐bodied species in the suborder Zygoptera (damselflies). Interestingly, fossil data show that the relationship between wing size and latitude has shifted: latitudinal size trends had initially negative slopes but became shallower or positive following the evolutionary emergence and radiation of birds.

    Main Conclusions

    The changing size‐latitude trends over geological and macroevolutionary time were likely driven by a combination of predation from birds and maybe pterosaurs and high dispersal ability of large dragonflies. Our study reveals that a simple version of Bergmann's Rule based on temperature alone is not sufficient to explain interspecific size‐latitude trends in Odonata. Our results instead suggest that latitudinal size gradients were shaped not only by temperature but also by avian predators, potentially driving the dispersal of large‐sized clades out of the tropics and into the temperate zone.

     
    more » « less
  4. null (Ed.)
    Macroecological rules have been developed for plants and animals that describe large-scale distributional patterns and attempt to explain the underlying physiological and ecological processes behind them. Similarly, microorganisms exhibit patterns in relative abundance, distribution, diversity, and traits across space and time, yet it remains unclear the extent to which microorganisms follow macroecological rules initially developed for macroorganisms. Additionally, the usefulness of these rules as a null hypothesis when surveying microorganisms has yet to be fully evaluated. With rapid advancements in sequencing technology, we have seen a recent increase in microbial studies that utilize macroecological frameworks. Here, we review and synthesize these macroecological microbial studies with two main objectives: (1) to determine to what extent macroecological rules explain the distribution of host-associated and free-living microorganisms, and (2) to understand which environmental factors and stochastic processes may explain these patterns among microbial clades (archaea, bacteria, fungi, and protists) and habitats (host-associated and free living; terrestrial and aquatic). Overall, 78% of microbial macroecology studies focused on free living, aquatic organisms. In addition, most studies examined macroecological rules at the community level with only 35% of studies surveying organismal patterns across space. At the community level microorganisms often tracked patterns of macroorganisms for island biogeography (74% confirm) but rarely followed Latitudinal Diversity Gradients (LDGs) of macroorganisms (only 32% confirm). However, when microorganisms and macroorganisms shared the same macroecological patterns, underlying environmental drivers (e.g., temperature) were the same. Because we found a lack of studies for many microbial groups and habitats, we conclude our review by outlining several outstanding questions and creating recommendations for future studies in microbial ecology. 
    more » « less
  5. Abstract Aim

    One of the primary characteristics that determines the structure and function of marine food webs is the utilization and prominence of energy‐rich lipids. The biogeographical pattern of lipids throughout the ocean delineates the marine “lipidscape,” which supports lipid‐rich fish, mammal, and seabird communities. While the importance of lipids is well appreciated, there are no synoptic measurements or biogeographical estimates of the marine lipidscape. Productive lipid‐rich food webs in the pelagic ocean depend on the critical diapause stage of large pelagic copepods, which integrate lipid production from phytoplankton, concentrating it in space and time, and making it available to upper trophic levels as particularly energy‐rich wax esters. As an important first step towards mapping the marine lipidscape, we compared four different modelling approaches of copepodid diapause, each representing different underlying hypotheses, and evaluated them against global datasets.

    Location

    Global Ocean.

    Taxon

    Copepoda.

    Methods

    Through a series of global model runs and data comparisons, we demonstrated the potential for regional studies to be extended to estimate global biogeographical patterns of diapause. We compared four modelling approaches each designed from a different perspective: life history, physiology, trait‐based community ecology, and empirical relationships. We compared the resulting biogeographical patterns and evaluated the model results against global measurements of copepodid diapause.

    Results

    Models were able to resolve more than just the latitudinal pattern of diapause (i.e. increased diapause prevalence near the poles), but to also pick up a diversity of regions where diapause occurs, such as coastal upwelling zones and seasonal seas. The life history model provided the best match to global observations. The predicted global biogeographical patterns, combined with carbon flux estimates, suggested a lower bound of 0.031–0.25 Pg C yr−1of downward flux associated with copepodid diapause.

    Main conclusions

    Results indicated a promising path forward for representing a detailed biogeography of the marine lipidscape and its associated carbon flux in global ecosystem and climate models. While complex models may offer advantages in terms of reproducing details of community structure, simpler theoretically based models appeared to best reproduce broad‐scale biogeographical patterns and showed the best correlation with observed biogeographical patterns.

     
    more » « less